1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202010025588.1 (22)申请日 2020.01.10 (71)申请人 中移 (杭州) 信息技术有限公司 地址 310011 浙江省杭州市五常街道余杭 塘路1600号A01号楼 申请人 中国移动通信集团有限公司 (72)发明人 段明雪汪树岩胡芳琴 (74)专利代理机构 上海晨皓知识产权代理事务 所(普通合伙) 31260 代理人 成丽杰 (51)Int.Cl. G06N 3/00(2006.01) (54)发明名称 粒子群位置搜索方法、 系统、 装置及可读存 储介质
2、(57)摘要 本发明实施例涉及粒子群领域, 公开了一种 粒子群位置搜索方法。 根据粒子群的初始位置和 初始速度计算每个粒子的位置适应度, 使用每个 粒子的所述位置适应度更新每个粒子的个体最 优位置, 利用每个粒子的所述位置适应度更新每 个粒子的全局最优位置, 根据所述更新次数求解 每个粒子的惯性权重和学习因子, 根据所述惯性 权重和所述学习因子计算得到所述粒子群内每 个粒子的更新位置和更新速度, 根据每个粒子的 所述更新位置和所述更新速度得到的所述粒子 群内每个粒子的个体最优位置和全局最优位置。 本发明还提出一种粒子群位置搜索电子设备、 装 置以及计算机可读存储介质。 本发明可有效的解 决在全
3、局空间的搜索情况下搜索效率差, 收敛速 度慢的缺点。 权利要求书3页 说明书13页 附图4页 CN 111242269 A 2020.06.05 CN 111242269 A 1.一种粒子群的位置搜索方法, 其特征在于, 所述方法包括: 位置适应度计算步骤: 根据粒子群内每个粒子的初始位置和初始速度计算每个粒子的 位置适应度; 个体最优位置更新步骤: 使用每个粒子的所述位置适应度更新每个粒子的个体最优位 置; 全局最优位置选择步骤: 利用每个粒子的所述位置适应度更新预构建的全局最优位置 网格集, 根据预设的全局最优位置选择规则, 从所述全局最优位置网格集内选择得到每个 粒子的全局最优位置; 惯
4、性权重及学习因子计算步骤: 统计所述个体最优位置更新的更新次数, 若所述更新 次数小于预设更新阈值, 根据所述更新次数求解每个粒子的惯性权重和学习因子; 位置适应度更新步骤: 根据所述惯性权重和所述学习因子计算得到所述粒子群内每个 粒子的更新位置和更新速度, 根据每个粒子的所述更新位置和所述更新速度重新计算每个 粒子的位置适应度, 并返回个体最优位置更新步骤; 更新次数判断步骤: 若所述更新次数大于等于所述预设更新阈值, 输出得到的所述粒 子群内每个粒子的个体最优位置和全局最优位置。 2.根据权利要求1所述的粒子群的位置搜索方法, 其特征在于, 所述使用每个粒子的所 述位置适应度更新每个粒子的
5、个体最优位置, 包括: 判断每个粒子的所述位置适应度与每个粒子预存储的个体最优位置的支配关系; 若所述位置适应度支配预存储的所述个体最优位置, 则将所述位置适应度替代预存储 的所述个体最优位置; 若预存储的所述个体最优位置支配所述位置适应度, 则保持每个粒子预存储的个体最 优位置不变; 若所述位置适应度与预存储的所述个体最优位置不存在支配关系, 则随机选择所述位 置适应度或预存储的所述个体最优位置作为每个粒子的个体最优位置。 3.根据权利要求2所述的粒子群的位置搜索方法, 其特征在于, 所述判断每个粒子的所 述位置适应度与每个粒子预存储的个体最优位置的支配关系, 包括: 采用如下支配关系判断公
6、式判断每个粒子的所述位置适应度与每个粒子预存储的个 体最优位置的支配关系: 其中, fi()表示预构建的支配关系判断公式, i1,2,n是所述fi()的分量表示, 表示所述粒子群内第k个粒子的位置适应度, a表示所述位置适应度, 表示所述粒子群内 第k个粒子的预存储的所述个体最优位置, b表示所述个体最优位置。 4.根据权利要求1所述的粒子群的位置搜索方法, 其特征在于, 所述利用每个粒子的所 述位置适应度更新预构建的全局最优位置网格集, 包括: 寻找每个粒子的所述位置适应度在所述全局最优位置网格集内对应的分全局最优位 置集; 权利要求书 1/3 页 2 CN 111242269 A 2 判断
7、每个粒子的所述位置适应度与对应的所述分全局最优位置集的支配关系得到支 配关系判断结果; 根据所述支配关系判断结果更新所述分全局最优位置集, 得到更新后的全局最优位置 网格集。 5.根据权利要求4所述的粒子群的位置搜索方法, 其特征在于, 所述根据所述支配关系 判断结果更新所述分全局最优位置集, 包括: 若所述分全局最优位置集为空集, 则将所述位置适应度直接存入至所述分全局最优位 置集内; 若所述分全局最优位置集不为空集时, 判断所述位置适应度与所述分全局最优位置集 内的每个全局最优位置是否存在支配关系; 若所述位置适应度被所述分全局最优位置集内其中的一个全局最优位置所支配, 则不 更新所述分全
8、局最优位置集; 若所述位置适应度支配所述分全局最优位置集内其中的一个全局最优位置, 则将所述 位置适应度代替所述分全局最优位置集内被支配的全局最优位置; 若所述位置适应度与所述分全局最优位置集内任意的全局最优位置都不存在支配关 系, 将所述位置适应度存入至所述分全局最优位置集内。 6.根据权利要求5所述的粒子群的位置搜索方法, 其特征在于, 所述将所述位置适应度 存入至所述分全局最优位置集内, 包括: 根据预构建的粒子拥挤距离计算方法, 计算与所述分全局最优位置集对应的分粒子群 内每两个粒子之间的拥挤距离; 若每两个粒子之间的所述拥挤距离小于预设拥挤距离, 则删除每两个粒子中其中一个 粒子在所
9、述分全局最优位置集内对应的全局最优位置, 将所述位置适应度存入至判断完成 后的所述分全局最优位置集内。 7.根据权利要求6所述的粒子群的位置搜索方法, 其特征在于, 所述粒子拥挤距离计算 方法为: 其中, di为预设的第i个粒子的拥挤距离最小值, fi+1,m表示第i+1个粒子第m个位置目标 值, fi-i,m表示第i-1个粒子的第m个位置目标值, M表示位置目标值的个数;及分别 指M个位置目标值中的最大位置目标值及最小位置目标值。 8.一种粒子群的位置搜索装置, 其特征在于, 所述装置包括: 个体最优位置更新模块, 用于根据粒子群内每个粒子的初始位置和初始速度计算每个 粒子的位置适应度, 使
10、用每个粒子的所述位置适应度更新每个粒子的个体最优位置; 全局最优位置选择模块, 用于利用每个粒子的所述位置适应度更新预构建的全局最优 位置网格集, 根据预设的全局最优位置选择规则, 从所述全局最优位置网格集内选择得到 每个粒子的全局最优位置; 位置适应度更新模块, 用于统计所述个体最优位置更新的更新次数, 若所述更新次数 小于预设更新阈值, 根据所述更新次数求解每个粒子的惯性权重和学习因子, 根据所述惯 权利要求书 2/3 页 3 CN 111242269 A 3 性权重和所述学习因子计算得到所述粒子群内每个粒子的更新位置和更新速度, 根据每个 粒子的所述更新位置和所述更新速度重新计算每个粒子
11、的位置适应度, 并返回个体最优位 置更新步骤; 更新次数判断模块, 用于若所述更新次数大于等于所述预设更新阈值, 输出得到的所 述粒子群内每个粒子的个体最优位置和全局最优位置。 9.一种电子设备, 其特征在于, 所述电子设备包括: 至少一个处理器; 以及, 与所述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有可被所述至少一个处理器执行的指令, 所述指令被所述至少一个处 理器执行, 以使所述至少一个处理器能够执行如权利要求1至7中任一所述的粒子群的位置 搜索方法。 10.一种计算机可读存储介质, 存储有计算机程序, 其特征在于, 所述计算机程序被处 理器执行时实现如权利要求1至7中任
12、一所述的粒子群的位置搜索方法。 权利要求书 3/3 页 4 CN 111242269 A 4 粒子群位置搜索方法、 系统、 装置及可读存储介质 技术领域 0001 本发明实施例涉及多目标优化、 粒子群算法及遗传算法领域, 特别涉及一种粒子 群的位置搜索的方法、 电子设备、 装置及计算机可读存储介质。 背景技术 0002 目前粒子群的位置搜索方法主要包括传统搜索算法和智能搜索算法两类, 传统搜 索算法有线性加权法、 约束法和线性规划法等, 传统算法解决多目标问题就是将多目标问 题通过一定办法转变成单目标问题来求解; 智能搜索算法有进化算法(Evolutionary Algorithm, EA)、
13、 粒子群算法(Particle Swarm Optimization, PSO)、 非支配排序遗传算法 (Non-dominated Sorting Genetic Algorithms, NSGA)等依赖仿生学发展起来的算法。 0003 其中智能优化算法对于求解带有约束条件的多目标问题具有先天的优势, 越来越 得到广泛应用, 但发明人发现, 当前智能优化算法在全局空间的搜索情况下搜索效率差, 收 敛速度慢的缺点。 发明内容 0004 本发明实施方式的目的在于提供一种粒子群的位置搜索方法、 电子设备、 装置及 计算机可读存储介质, 以解决在全局空间的搜索情况下搜索效率差, 收敛速度慢的缺点。
14、0005 为解决上述技术问题, 本发明的实施方式提供了一种粒子群的位置搜索方法, 所 述方法包括: 0006 位置适应度计算步骤: 根据粒子群内每个粒子的初始位置和初始速度计算每个粒 子的位置适应度; 0007 个体最优位置更新步骤: 使用每个粒子的所述位置适应度更新每个粒子的个体最 优位置; 0008 全局最优位置选择步骤: 利用每个粒子的所述位置适应度更新预构建的全局最优 位置网格集, 根据预设的全局最优位置选择规则, 从所述全局最优位置网格集内选择得到 每个粒子的全局最优位置; 0009 惯性权重及学习因子计算步骤: 统计所述个体最优位置更新的更新次数, 若所述 更新次数小于预设更新阈值
15、, 根据所述更新次数求解每个粒子的惯性权重和学习因子; 0010 位置适应度更新步骤: 根据所述惯性权重和所述学习因子计算得到所述粒子群内 每个粒子的更新位置和更新速度, 根据每个粒子的所述更新位置和所述更新速度重新计算 每个粒子的位置适应度, 并返回个体最优位置更新步骤; 0011 更新次数判断步骤: 若所述更新次数大于等于所述预设更新阈值, 输出得到的所 述粒子群内每个粒子的个体最优位置和全局最优位置。 0012 优选地, 所述使用每个粒子的所述位置适应度更新每个粒子的个体最优位置, 包 括: 0013 判断每个粒子的所述位置适应度与每个粒子预存储的个体最优位置的支配关系; 说明书 1/1
16、3 页 5 CN 111242269 A 5 0014 若所述位置适应度支配预存储的所述个体最优位置, 则将所述位置适应度替代预 存储的所述个体最优位置; 0015 若预存储的所述个体最优位置支配所述位置适应度, 则保持每个粒子预存储的个 体最优位置不变; 0016 若所述位置适应度与预存储的所述个体最优位置不存在支配关系, 则随机选择所 述位置适应度或预存储的所述个体最优位置作为每个粒子的个体最优位置。 0017 优选地, 所述判断每个粒子的所述位置适应度与每个粒子预存储的个体最优位置 的支配关系, 包括: 0018 采用如下支配关系判断公式判断每个粒子的所述位置适应度与每个粒子预存储 的个
17、体最优位置的支配关系: 0019 0020 0021 其中, fi()表示预构建的支配关系判断公式, i1,2,n是所述fi()的分量表 示,表示所述粒子群内第k个粒子的位置适应度, a表示所述位置适应度,表示所述粒 子群内第k个粒子的预存储的所述个体最优位置, b表示所述个体最优位置。 0022 优选地, 所述利用每个粒子的所述位置适应度更新预构建的全局最优位置网格 集, 包括: 0023 寻找每个粒子的所述位置适应度在所述全局最优位置网格集内对应的分全局最 优位置集; 0024 判断每个粒子的所述位置适应度与对应的所述分全局最优位置集的支配关系得 到支配关系判断结果; 0025 根据所述支
18、配关系判断结果更新所述分全局最优位置集, 得到更新后的全局最优 位置网格集。 0026 优选地, 所述根据所述支配关系判断结果更新所述分全局最优位置集, 包括: 0027 若所述分全局最优位置集为空集, 则将所述位置适应度直接存入至所述分全局最 优位置集内; 0028 若所述分全局最优位置集不为空集时, 判断所述位置适应度与所述分全局最优位 置集内的每个全局最优位置是否存在支配关系; 0029 若所述位置适应度被所述分全局最优位置集内其中的一个全局最优位置所支配, 则不更新所述分全局最优位置集; 0030 若所述位置适应度支配所述分全局最优位置集内其中的一个全局最优位置, 则将 所述位置适应度
19、代替所述分全局最优位置集内被支配的全局最优位置; 0031 若所述位置适应度与所述分全局最优位置集内任意的全局最优位置都不存在支 配关系, 将所述位置适应度存入至所述分全局最优位置集内。 0032 优选地, 所述将所述位置适应度存入至所述分全局最优位置集内, 包括: 0033 根据预构建的粒子拥挤距离计算方法, 计算与所述分全局最优位置集对应的分粒 子群内每两个粒子之间的拥挤距离; 0034 若每两个粒子之间的所述拥挤距离小于预设拥挤距离, 则删除每两个粒子中其中 说明书 2/13 页 6 CN 111242269 A 6 一个粒子在所述分全局最优位置集内对应的全局最优位置, 将所述位置适应度
20、存入至判断 完成后的所述分全局最优位置集内。 0035 优选地, 所述粒子拥挤距离计算方法为: 0036 0037 其中, di为预设的第i个粒子的拥挤距离最小值, fi+1,m表示第i+1个粒子第m个位置 目标值, fi-i,m表示第i-1个粒子的第m个位置目标值, M表示位置目标值的个数;及 分别指M个位置目标值中的最大位置目标值及最小位置目标值。 0038 为了解决上述问题, 本发明还提供一种粒子群的位置搜索装置, 所述装置包括: 0039 个体最优位置更新模块, 用于根据粒子群内每个粒子的初始位置和初始速度计算 每个粒子的位置适应度, 使用每个粒子的所述位置适应度更新每个粒子的个体最优
21、位置; 0040 全局最优位置选择模块, 用于利用每个粒子的所述位置适应度更新预构建的全局 最优位置网格集, 根据预设的全局最优位置选择规则, 从所述全局最优位置网格集内选择 得到每个粒子的全局最优位置; 0041 位置适应度更新模块, 用于统计所述个体最优位置更新的更新次数, 若所述更新 次数小于预设更新阈值, 根据所述更新次数求解每个粒子的惯性权重和学习因子, 根据所 述惯性权重和所述学习因子计算得到所述粒子群内每个粒子的更新位置和更新速度, 根据 每个粒子的所述更新位置和所述更新速度重新计算每个粒子的位置适应度, 并返回个体最 优位置更新步骤; 0042 更新次数判断模块, 用于若所述更
22、新次数大于等于所述预设更新阈值, 输出得到 的所述粒子群内每个粒子的个体最优位置和全局最优位置。 0043 为了解决上述问题, 本发明还提供一种电子设备, 所述电子设备包括: 0044 存储器, 存储至少一个指令; 及 0045 处理器, 执行所述存储器中存储的指令以实现上述所述的粒子群的位置搜索方 法。 0046 为了解决上述问题, 本发明还提供一种计算机可读存储介质, 所述计算机可读存 储介质中存储有至少一个指令, 所述至少一个指令被电子设备中的处理器执行以实现上述 所述的粒子群的位置搜索方法。 0047 本发明通过采用预设的全局最优位置选择规则, 从全局最优位置网格集内选择得 到粒子群内
23、每个粒子的全局最优位置, 因为全局最优位置网格集是经过网格划分的多个层 次的数据集, 因此在更新时只需要更新一部分网格集即可, 提高整个粒子群在全局空间下 更新全局最优位置的效率, 进行解决在全局空间的搜索情况下搜索效率差的问题, 其次利 用更新次数计算惯性权重及学习因子, 当更新次数过大时会自动调节惯性权重及学习因子 的值, 进而加速收敛速度。 0048 进一步地, 通过支配关系的判断更新个体最佳位置的方法简便, 加快了计算机的 处理速度, 其次通过粒子拥挤距离计算方法时刻控制分全局最优位置集的数据量, 防止数 据量多大对存储系统带来压力。 说明书 3/13 页 7 CN 111242269
24、 A 7 附图说明 0049 一个或多个实施例通过与之对应的附图中的图片进行示例性说明, 这些示例性说 明并不构成对实施例的限定, 附图中具有相同参考数字标号的元件表示为类似的元件, 除 非有特别申明, 附图中的图不构成比例限制。 0050 图1为本发明实施例提供的粒子群的位置搜索方法流程示意图; 0051 图2为本发明实施例提供的粒子群的位置搜索方法中计算位置适应度的详细实施 流程示意图; 0052 图3为本发明实施例提供的粒子群的位置搜索方法中S2的详细实施流程示意图; 0053 图4为本发明实施例提供的粒子群的位置搜索方法中更新全局最优位置网格集的 详细实施流程示意图; 0054 图5为
25、本发明实施例提供的粒子群的位置搜索装置的模块示意图; 0055 图6为本发明实施例提供的实现粒子群的位置搜索方法的电子设备的内部结构示 意图; 0056 本发明目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。 具体实施方式 0057 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 的各实施方式进行详细的阐述。 然而, 本领域的普通技术人员可以理解, 在本发明各实施方 式中, 为了使读者更好地理解本申请而提出了许多技术细节。 但是, 即使没有这些技术细节 和基于以下各实施方式的种种变化和修改, 也可以实现本申请所要求保护的技术方案。 0058 本发明的
26、实施方式涉及一种粒子群的位置搜索方法, 本实施方式的核心在于更新 个体最优位置及全局最优位置, 并判断更新次数与预设更新阈值得到判断结果, 根据判断 结果完成粒子群的位置搜索, 从而有效的解决在全局空间的搜索情况下搜索效率差, 收敛 速度慢的缺点。 下面对本实施方式的粒子群的位置搜索实现细节进行具体的说明, 以下内 容仅为方便理解提供的实现细节, 并非实施本方案的必须。 0059 参阅图1所示, 图1是本发明实施方式中粒子群的位置搜索的流程图, 包括: 0060 S1、 获取粒子群内每个粒子的初始位置和初始速度, 根据所述粒子群内每个粒子 的初始位置和初始速度计算每个粒子的位置适应度。 006
27、1 位置搜索是通过预构建的优化算法求解满足用户问题要求解的搜索过程。 本发明 的位置搜索主要基于群体为单位进行位置搜索, 通过本发明的技术手段实现群体位置与群 体内的每个成员位置的有效协调。 0062 如在海域A内有一艘发生意外事故的航海船, 航海船内有一位受伤并流血的乘客, 因为血液的扩散导致海域A内大部分鲨鱼闻腥而至, 因为鲨鱼对血液具有以生俱来的敏感, 虽然不能精确的锁定航海船的位置, 但可以通过鲨鱼群群体的力量, 在最短的时间内每个 鲨鱼分工协作进行搜索从而确定航海船位置, 此时搜救队伍根据鲨鱼群的搜索路径, 需要 尽快的确定鲨鱼群最优的搜索路径, 从而控制好时间以保证在鲨鱼群到达航海
28、船前营救航 海船内的乘客。 0063 进一步地, 所述粒子群即为上述的鲨鱼群, 而所述粒子群内每个粒子表示上述鲨 鱼群内每个鲨鱼, 若以海域A建立坐标系可得到每个鲨鱼的初始位置, 初始速度可表示鲨鱼 说明书 4/13 页 8 CN 111242269 A 8 群内的鲨鱼在闻到血腥味前的平均速度。 0064 详细地, 根据所述粒子群内每个粒子的初始位置和初始速度计算每个粒子的位置 适应度, 请参阅图2计算位置适应度详细实施流程示意图所示, 包括: 0065 S11、 将所述粒子群内每个粒子的初始位置和初始速度作为预构建的位置适应度 计算公式的参数值; 0066 S12、 求解所述位置适应度计算公
29、式得到每个粒子的位置适应度。 0067 进一步地, 所述位置适应度计算公式有多种, 可采用当前已知的Griewank函数、 Rastrigin函数、 Schaffer函数及Ackley函数等。 0068 S2、 使用每个粒子的所述位置适应度更新每个粒子的个体最优位置。 0069 详细地, 所述S2可参阅图3的详细实施流程示意图所示, 包括: 0070 S21、 判断每个粒子的所述位置适应度与每个粒子预存储的个体最优位置的支配 关系; 0071 S22、 若所述位置适应度支配预存储的所述个体最优位置, 则用所述位置适应度替 代预存储的所述个体最优位置; 0072 S23、 若预存储的所述个体最优
30、位置支配所述位置适应度, 则保持每个粒子当前预 存储的个体最优位置不变; 0073 S24、 若所述位置适应度与预存储的所述个体最优位置不存在支配关系, 则随机选 择所述位置适应度或预存储的所述个体最优位置作为每个粒子的个体最优位置。 0074 所述个体最优位置是不考虑粒子群对每个粒子的影响因素, 只考虑粒子本身因素 所计算得到的位置, 如上述鲨鱼群内的每个鲨鱼都闻到血腥味, 若不考虑鲨鱼群内每个鲨 鱼之间的位置影响而计算出每个鲨鱼相对于航海船的最佳位置, 称为个体最优位置。 0075 进一步地, 判断支配关系包括采用如下判断公式: 0076 0077 0078 其中, fi()表示支配关系的
31、判断公式, i1,2,n表示所述判断公式fi()的分 量,表示所述粒子群内第k个粒子的位置适应度, a表示所述位置适应度, 表示所述粒 子群内第k个粒子的预存储的所述个体最优位置, b表示所述个体最优位置。 0079 S3、 利用每个粒子的所述位置适应度更新预构建的全局最优位置网格集, 根据预 设的全局最优位置选择规则, 从所述全局最优位置网格集内选择得到每个粒子的全局最优 位置。 0080 所述全局最优位置网格集是存储了整个粒子群内每个粒子的全局最优位置的集 合, 进一步地, 因为粒子群的数量一般非常庞大, 若不对全局最优位置网格集进行网格划 分, 更新整个粒子群的全局最优位置网格集时会占用
32、大量的计算资源, 因此将全局最优位 置集划分为若干个网格段, 每个网格段存储一部分的全局最优位置, 其中一部分的全局最 优位置称为分全局最优位置集。 0081 如上所述, 个体最优位置是不考虑粒子群对每个粒子的影响因素, 只考虑粒子本 身因素所计算得到的位置, 如上述鲨鱼群内的每个鲨鱼都闻到血腥味, 若不考虑鲨鱼群内 每个鲨鱼之间的位置影响而计算出每个鲨鱼相对于航海船的最佳位置称为个体最优位置, 说明书 5/13 页 9 CN 111242269 A 9 而全局最优位置是考虑粒子群对每个粒子的影响因素后, 对粒子群内每个粒子所设定的位 置, 如上述鲨鱼群内的每个鲨鱼都闻到血腥味, 考虑到鲨鱼群
33、内每个鲨鱼之间位置的互相 影响而计算出每个鲨鱼需找航海船的最佳位置, 称为全局最优位置。 0082 详细地, 利用每个粒子的所述位置适应度更新预构建的全局最优位置网格集, 可 参阅图4更新全局最优位置网格集的详细实施流程示意图所示, 包括: 0083 S31、 寻找每个粒子的所述位置适应度在所述全局最优位置网格集内对应的分全 局最优位置集; 0084 S32、 判断每个粒子的所述位置适应度与对应的所述分全局最优位置集的支配关 系; 0085 S33、 根据所述支配关系更新所述分全局最优位置集, 得到更新后的全局最优位置 网格集。 0086 其中, 所述位置适应度与对应的所述分全局最优位置集的支
34、配关系所采用的判断 方式可与S2所采用的判断方式相同。 0087 进一步地, 所述根据所述支配关系更新所述分全局最优位置集, 包括: 判断所述分 全局最优位置集是否为空集, 若所述分全局最优位置集为空集, 则将所述位置适应度直接 存入至所述分全局最优位置集内, 若所述分全局最优位置集不为空集时, 判断所述位置适 应度与所述分全局最优位置集内的每个全局最优位置是否存在支配关系, 若所述位置适应 度被所述分全局最优位置集内其中的一个全局最优位置所支配, 则不更新所述分全局最优 位置集, 若所述位置适应度支配所述分全局最优位置集内其中的一个全局最优位置, 则将 所述位置适应度代替所述分全局最优位置集
35、内被支配的全局最优位置, 若所述位置适应度 与所述分全局最优位置集内任意的全局最优位置都不存在支配关系, 将所述位置适应度存 入至所述分全局最优位置集内。 0088 更进一步地, 所述将所述位置适应度存入至所述分全局最优位置集内, 包括: 根据 预构建的粒子拥挤距离计算方法, 计算与所述分全局最优位置集对应的分粒子群内每两个 粒子之间的拥挤距离, 判断每两个粒子之间的所述拥挤距离是否小于预设拥挤距离, 若每 两个粒子之间的所述拥挤距离小于所述预设拥挤距离, 则删除每两个粒子中其中一个粒子 在所述分全局最优位置集内对应的全局最优位置, 将所述位置适应度存入至判断完成后的 所述分全局最优位置集内。
36、 0089 所述粒子拥挤距离计算方法包括采用如下计算方法: 0090 0091 其中, di为第i个粒子的拥挤距离最小值, fi+1,m表示第i+1个粒子第m个位置目标 值, fi-im表示第i-1个粒子的第m个位置目标值, M表示目标值个数;及分别指M个目 标值中的最大目标值及最小目标值。 0092 如上述鲨鱼群搜索航海船的流血乘客的例子里, 位置目标值只有一个流血乘客, 若有八个流血的乘客, 则位置目标值变为八个。 0093 S4、 统计所述个体最优位置更新的更新次数。 0094 如上述搜救队伍根据鲨鱼群的搜索路径, 需要尽快的确定鲨鱼群最优的搜索路 说明书 6/13 页 10 CN 11
37、1242269 A 10 径, 为了不耽误更多的营救时间, 设定更新次数为1000次, 当满足更新次数到达1000次后, 则直接输出鲨鱼群的个体最优位置和全局最优位置。 0095 S5、 判断所述更新次数是否大于预设更新阈值。 0096 S6、 若所述更新次数小于所述预设更新阈值, 根据所述更新次数求解每个粒子的 惯性权重和学习因子。 0097 如上述搜救队伍设定更新次数为1000次, 此时才更新一次个体最优位置, 因此进 一步求解每个粒子的惯性权重和学习因子。 0098 所述学习因子包括第一学习因子和第二学习因子, 其中所述第一学习因子和所述 第二学习因子的更新公式如下: 0099 0100
38、 其中, i为所述更新次数, N为所述预设更新阈值, c1i2.5, c1f0.5, c2i0.5, c2f 2.5, c1表示所述第一学习因子, c2表示所述第二学习因子。 0101 所述惯性权重的计算公式为: 0102 0103 其中, w表示所述惯性权重, wmax表示所述w能取到的最大惯性权重值, wmin表示所述 w能取到的最小惯性权重值, N为所述预设更新阈值, i为所述更新次数。 0104 S7、 根据所述惯性权重和所述学习因子计算得到所述粒子群内每个粒子的更新位 置和更新速度, 根据每个粒子的所述更新位置和所述更新速度重新计算每个粒子的位置适 应度, 并返回S2。 0105 详
39、细地, 所述根据所述惯性权重和所述学习因子计算得到所述粒子群内每个粒子 的更新速度的计算方法包括: 0106 0107其中, 表示所述粒子群内第k个粒子的第j次的更新速度, 表示所述惯性权重, c1表示所述第一学习因子, c2表示所述第二学习因子,表示所述粒子群内第k个粒子的 第j-1次的更新速度,表示所述粒子群内第k个粒子的第j-1次的个体最优位置, 表示所述粒子群内第k个粒子的第j-1次的全局最优位置,表示所述粒子群内 第k个粒子的第j-1次的更新位置。 0108 详细地, 所述根据所述惯性权重和所述学习因子计算得到所述粒子群内每个粒子 的更新位置的计算方法包括: 0109 0110表示所
40、述粒子群内第k个粒子的第j次的更新位置。 0111 S8、 若所述更新次数大于所述预设更新阈值, 得到所述粒子群内每个粒子的个体 说明书 7/13 页 11 CN 111242269 A 11 最优位置和全局最优位置。 0112 如图5所示, 是本发明粒子群的位置搜索装置的功能模块图。 0113 本发明所述粒子群的位置搜索装置100可以安装于电子设备中。 根据实现的功能, 所述粒子群的位置搜索装置可以包括个体最优位置更新模块101、 全局最优位置选择模块 102、 位置适应度更新模块103和更新次数判断模块104。 本发所述模块也可以称之为单元, 是指一种能够被电子设备处理器所执行, 并且能够
41、完成固定功能的一系列计算机程序段, 其存储在电子设备的存储器中。 0114 在本实施例中, 关于各模块/单元的功能如下: 0115 个体最优位置更新模块101, 用于根据粒子群内每个粒子的初始位置和初始速度 计算每个粒子的位置适应度, 使用每个粒子的所述位置适应度更新每个粒子的个体最优位 置。 0116 全局最优位置选择模块102, 用于利用每个粒子的所述位置适应度更新预构建的 全局最优位置网格集, 根据预设的全局最优位置选择规则, 从所述全局最优位置网格集内 选择得到每个粒子的全局最优位置。 0117 位置适应度更新模块103, 用于统计所述个体最优位置更新的更新次数, 若所述更 新次数小于
42、预设更新阈值, 根据所述更新次数求解每个粒子的惯性权重和学习因子, 根据 所述惯性权重和所述学习因子计算得到所述粒子群内每个粒子的更新位置和更新速度, 根 据每个粒子的所述更新位置和所述更新速度重新计算每个粒子的位置适应度, 并返回个体 最优位置更新步骤。 0118 更新次数判断模块104, 用于若所述更新次数大于等于所述预设更新阈值, 输出得 到的所述粒子群内每个粒子的个体最优位置和全局最优位置。 0119 本申请所提供的装置中的模块能够在使用时基于与上述的粒子群的位置搜索方 法, 在于更新个体最优位置及全局最优位置, 并判断更新次数与预设更新阈值得到判断结 果, 根据判断结果完成粒子群的位
43、置搜索, 其在具体运行时可以取得上述的方法实施例一 样的技术效果, 即有效的解决在全局空间的搜索情况下搜索效率差, 收敛速度慢的缺点的 问题。 0120 如图6所示, 是本发明实现粒子群的位置搜索方法的电子设备的结构示意图。 0121 所述电子设备1可以包括处理器12、 存储器11和总线, 还可以包括存储在所述存储 器11中并可在所述处理器12上运行的计算机程序。 0122 其中, 所述存储器11至少包括一种类型的可读存储介质, 所述可读存储介质包括 闪存、 移动硬盘、 多媒体卡、 卡型存储器(例如: SD或DX存储器等)、 磁性存储器、 磁盘、 光盘 等。 所述存储器11在一些实施例中可以是
44、电子设备1的内部存储单元, 例如该电子设备1的 移动硬盘。 所述存储器11在另一些实施例中也可以是电子设备1的外部存储设备, 例如电子 设备1上配备的插接式移动硬盘、 智能存储卡(Smart Media Card, SMC)、 安全数字(Secure Digital, SD)卡、 闪存卡(Flash Card)等。 进一步地, 所述存储器11还可以既包括电子设备1 的内部存储单元也包括外部存储设备。 所述存储器11不仅可以用于存储安装于电子设备1 的应用软件及各类数据, 例如粒子群的位置搜索程序的代码等, 还可以用于暂时地存储已 经输出或者将要输出的数据。 0123 所述处理器12在一些实施例
45、中可以由集成电路组成, 例如可以由单个封装的集成 说明书 8/13 页 12 CN 111242269 A 12 电路所组成, 也可以是由多个相同功能或不同功能封装的集成电路所组成, 包括一个或者 多个中央处理器(Central Processing unit, CPU)、 微处理器、 数字处理芯片、 图形处理器 及各种控制芯片的组合等。 所述处理器12是所述电子设备的控制核心(Control Unit), 利 用各种接口和线路连接整个电子设备的各个部件, 通过运行或执行存储在所述存储器11内 的程序或者模块(例如执行粒子群的位置搜索程序等), 以及调用存储在所述存储器11内的 数据, 以执行
46、电子设备1的各种功能和处理数据。 0124 所述总线可以是外设部件互连标准(peripheral component interconnect, 简称 PCI)总线或扩展工业标准结构(extended industry standard architecture, 简称EISA) 总线等。 该总线可以分为地址总线、 数据总线、 控制总线等。 所述总线被设置为实现所述存 储器11以及至少一个处理器12等之间的连接通信。 0125 图6仅示出了具有部件的电子设备, 本领域技术人员可以理解的是, 图6示出的结 构并不构成对所述电子设备1的限定, 可以包括比图示更少或者更多的部件, 或者组合某些 部件
47、, 或者不同的部件布置。 0126 例如, 尽管未示出, 所述电子设备1还可以包括给各个部件供电的电源(比如电 池), 优选地, 电源可以通过电源管理装置与所述至少一个处理器10逻辑相连, 从而通过电 源管理装置实现充电管理、 放电管理、 以及功耗管理等功能。 电源还可以包括一个或一个以 上的直流或交流电源、 再充电装置、 电源故障检测电路、 电源转换器或者逆变器、 电源状态 指示器等任意组件。 所述电子设备1还可以包括多种传感器、 蓝牙模块、 Wi-Fi模块等, 在此 不再赘述。 0127 进一步地, 所述电子设备1还可以包括网络接口, 可选地, 所述网络接口可以包括 有线接口和/或无线接口
48、(如WI-FI接口、 蓝牙接口等), 通常用于在该电子设备1与其他电子 设备之间建立通信连接。 0128 可选地, 该电子设备1还可以包括用户接口, 用户接口可以是显示器(Display)、 输 入单元(比如键盘(Keyboard), 可选地, 用户接口还可以是标准的有线接口、 无线接口。 可 选地, 在一些实施例中, 显示器可以是LED显示器、 液晶显示器、 触控式液晶显示器以及OLED (Organic Light-Emitting Diode, 有机发光二极管)触摸器等。 其中, 显示器也可以适当的 称为显示屏或显示单元, 用于显示在电子设备1中处理的信息以及用于显示可视化的用户 界面。
49、 0129 应该了解, 所述实施例仅为说明之用, 在专利申请范围上并不受此结构的限制。 0130 所述电子设备1中的所述存储器11存储的请求粒子群的位置搜索程序12是多个指 令的组合, 在所述处理器10中运行时, 可以实现: 0131 步骤一、 获取粒子群内每个粒子的初始位置和初始速度, 根据所述粒子群内每个 粒子的初始位置和初始速度计算每个粒子的位置适应度。 0132 位置搜索是通过预构建的优化算法求解满足用户问题要求解的搜索过程。 本发明 的位置搜索主要基于群体为单位进行位置搜索, 通过本发明的技术手段实现群体位置与群 体内的每个成员位置的有效协调。 0133 如在海域A内有一艘发生意外事
50、故的航海船, 航海船内有一位受伤并流血的乘客, 因为血液的扩散导致海域A内大部分鲨鱼闻腥而至, 因为鲨鱼对血液具有以生俱来的敏感, 虽然不能精确的锁定航海船的位置, 但可以通过鲨鱼群群体的力量, 在最短的时间内每个 说明书 9/13 页 13 CN 111242269 A 13 鲨鱼分工协作进行搜索从而确定航海船位置, 此时搜救队伍根据鲨鱼群的搜索路径, 需要 尽快的确定鲨鱼群最优的搜索路径, 从而控制好时间以保证在鲨鱼群到达航海船前营救航 海船内的乘客。 0134 进一步地, 所述粒子群即为上述的鲨鱼群, 而所述粒子群内每个粒子表示上述鲨 鱼群内每个鲨鱼, 若以海域A建立坐标系可得到每个鲨鱼