1、10申请公布号CN102340303A43申请公布日20120201CN102340303ACN102340303A21申请号201110205220422申请日2011071412/805,14720100714USH03K19/017520060171申请人ARM有限公司地址英国剑桥72发明人桑杰伊巴格万帕提尔瓦伦蒂娜郭弥兹74专利代理机构北京东方亿思知识产权代理有限责任公司11258代理人宋鹤54发明名称两级电压电平转换57摘要本发明涉及两级电压电平转换,公开了一种电压电平转换器,用于将输出信号从第一电压电平转换到第二电压电平,然后转换到进一步提升的第二电压电平。电压电平转换器包括输入端
2、,接收输入信号;输出端,将输出信号输出;第一电源输入端,连接到提供所述第一电压电平的第一电压源;第二电源输入端,连接到提供所述第二电压电平的第二电压源;以及第三电源输入端,连接到提供所述提升的第二电压电平的第三电压源;电压电平转换器响应于输入信号中的预定变化,将第一电源输入端与输出端隔离,并将第二电源输入端连接到输出端,以及响应于输出信号达到预定值,将第三电源输入端连接到输出端,并将第二电源输入端与输出端隔离。30优先权数据51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书9页附图9页CN102340317A1/3页21一种电压电平转换器,用于将输出信号从第一电
3、压电平转换到第二电压电平,然后转换到进一步提升的第二电压电平,所述电压电平转换器包括输入端,用于接收输入信号;输出端,用于将输出信号输出;第一电源输入端,用于连接提供所述第一电压电平的第一电压源;第二电源输入端,用于连接提供所述第二电压电平的第二电压源;以及第三电源输入端,用于连接提供所述提升的第二电压电平的第三电压源;所述电压电平转换器响应于所述输入信号中的预定变化,将所述第一电源输入端与所述输出端隔离,并将所述第二电源输入端连接到所述输出端,以及响应于所述输出信号达到预定值,将所述第三电源输入端连接到所述输出端,并将所述第二电源输入端与所述输出端隔离。2根据权利要求1的电压电平转换器,其中
4、所述预定值实际上等于所述第二电压电平。3根据权利要求1的电压电平转换器,其中所述电压电平转换器包括反相器,使得触发所述输出从所述第一电压电平变化为所述第二提升的电压电平的所述输入电压中的所述预定变化包括从所述第二电压电平变化为所述第一电压电平的输入信号变化。4根据权利要求1的电压电平转换器,其中所述电压电平转换器包括第一开关,响应于所述输入信号的第一值,将所述输出端连接到所述第一电源输入端,以及响应于所述输入信号的第二值,将所述输出端与所述第一电源输入端隔离;第二开关,响应于所述输入信号的第二值,将所述输出端连接到所述第二电源输入端,以及响应于所述输入信号的所述第一值,将所述第二电源输入端与所
5、述输出端隔离;以及其他开关,响应于所述输出信号达到所述预定值,将所述第三电源输入端连接到所述输出端,所述其他开关形成反馈通道的一部分,所述反馈通道用于提供一信号,该信号用于通过改写提供给所述第二开关的所述第二值来控制所述第二开关,使得所述第二开关受控为响应于所述输出信号达到所述预定值,将所述输出信号与所述第二电源输入端隔离。5根据权利要求4的电压电平转换器,其中所述第二开关实际上大于所述其他开关的任何一个。6根据权利要求5的电压电平转换器,其中所述其他开关被配置为使得所述输出电压电平从所述预定值变化为所述第二提升的电压电平的速度小于所述输出电压电平从所述第一电压电平变化为所述预定值的速度。7根
6、据权利要求1的电压电平转换器,所述电压电平转换器包括三态电压电平转换器,所述三态电压电平转换器被配置为输出三种不同的输出信号将所述输入信号与所述输出信号隔离的高阻抗三态输出信号、所述第一电压电平和所述第二提升的电压电平,所述电压电平转换器包括其他输入端,该其他输入端用于接收三态控制信号,所述电压电平转换器响应于具有预定值的所述三态控制信号,通过将所述输入端与所述输出端隔离来产生所述三态输出信号。8一种包括至少一个根据权利要求1的电压电平转换器的设备,所述设备进一步包括第一电源、第二电源和第三电源,分别被配置为提供所述第一电压电平、所述第二电压权利要求书CN102340303ACN1023403
7、17A2/3页3电平以及所述提升的第二电压电平;电路,通过所述第一电源与所述第二电源之间的电压差而被供电;其中所述第三电源被配置为经由所述至少一个电压电平转换器将所述第二提升的电压电平作为偏置电压电平提供给所述设备中的至少一个元件;其由所述第三电源与所述第一电源、所述第二电源的至少其中之一相比是小电源。9根据权利要求8的设备,所述设备包括数据处理设备,所述数据处理设备包括处理电路,所述处理电路通过所述第一电源与所述第二电源之间的电压差而被供电,所述设备进一步包括至少一个功率控制开关,布置在所述第一电源和所述第二电源的其中之一与所述处理电路之间,所述至少一个功率控制开关受来自所述至少一个电压电平
8、转换器的所述输出信号控制,所述至少一个功率控制开关对所述至少一个电压电平转换器作出响应,所述至少一个电压电平转换器输出所述第一电压电平,用以将所述第一电源和所述第二电源的所述其中之一连接到所述处理电路;所述第二电压电平,用以将所述第一电源和所述第二电源的所述其中之一与所述处理电路隔离;以及所述提升的第二电压电平,用以将所述第一电源和所述第二电源的所述其中之一与所述处理电路隔离并通过所述功率控制开关提供更小的泄漏电流。10根据权利要求9的数据处理设备,其中所述至少一个电压电平转换器包括三态电压电平转换器;所述三态电压电平转换器被配置为输出三种不同的输出信号将所述输入信号与所述输出信号隔离的高阻抗
9、三态输出信号、所述第一电压电平和所述第二提升的电压电平,所述电压电平转换器包括其他输入端,该其他输入端用于接收三态控制信号;所述三态电压电平转换器响应于具有预定值的所述三态控制信号,通过将所述输入端与所述输出端隔离来产生所述三态输出信号;所述数据处理设备进一步包括保持模式开关,受所述三态控制信号控制,并连接在所述至少一个功率控制开关的输出端与所述至少一个功率控制开关的控制输入端之间,其中响应于具有所述预定值的所述三态控制信号,所述三态电压电平转换器输出所述高阻抗三态输出并且所述三态开关导通,使得所述至少一个功率控制开关的所述输出端连接到所述控制输入端,并且不同地提供给所述处理电路的一部分所述电
10、压在所述至少一个功率控制开关两端下降。11根据权利要求9的数据处理设备,其中所述数据处理设备包括SCMOS设备。12根据权利要求8的设备,所述设备包括半导体存储器存储装置,该半导体存储器存储装置包括多个存储单元,用于存储数据;至少两个访问控制线,分别用于控制到所述多个存储单元的至少其中之一的访问;其中响应于表示待访问的被选择单元的访问控制信号,所述至少一个电压电平转换器被控制为向所述访问控制线的其中之一输出所述提升的第二电压电平,以提升所述访问控制线上的电压电平。13一种将输出信号从第一电压电平转换到第二电压电平,然后将所述输出信号电压权利要求书CN102340303ACN102340317A
11、3/3页4转换到进一步提升的第二电压电平的方法,所述方法包括以下步骤将提供所述第一电压电平的第一电压源连接到第一电源输入端;将提供所述第二电压电平的第二电压源连接到第二电源输入端;以及将提供所述提升的第二电压电平的第三电压源连接到第三电源输入端;接收具有第一值的输入信号;响应于所述输入信号的接收,将所述第一电压源连接到输出端,以产生所述输出信号;接收从所述第一值变化为第二值的输入信号;响应于所述变化将所述第一电源输入端与所述输出端隔离;将所述第二电源输入端连接到所述输出端;以及响应于达到预定值的所述输出信号将所述第三电源输入端连接到所述输出端并将所述第二电源输入端与所述输出端隔离。14根据权利
12、要求13的方法,其中所述预定值实际上等于所述第二电压电平。15根据权利要求13的方法,其中所述电压电平转换器包括反相器,使得所述输入信号的所述第一值包括所述第二电压电平,且所述输入信号的所述第二值包括所述第一电压电平。16一种电压转换装置,用于将输出信号从第一电压电平转换为第二电压电平,然后转换为进一步提升的第二电压电平,所述电压转换装置包括输入装置,用于接收输入信号;输出装置,用于将输出信号输出;第一电源输入装置,用于连接到提供所述第一电压电平的第一电压源;第二电源输入装置,用于连接到提供所述第二电压电平的第二电压源;以及第三电源输入装置,用于连接到提供所述提升的第二电压电平的第三电压源;所
13、述电压转换装置用于响应于所述输入信号中的预定变化,将所述第一电压源与所述输出端隔离,并将所述第二电源输入装置连接到所述输出端,以及用于响应于所述输出信号达到预定值,将所述第三电源输入装置连接到所述输出装置,并将所述第二电源输入装置与所述输出装置隔离。17一种包括至少一个根据权利要求16的电压转换装置的设备,所述设备进一步包括用于提供电压的三个装置,第一装置用于提供所述第一电压电平、第二装置用于提供所述第二电压电平、第三装置用于提供所述提升的第二电压电平;电路,通过所述第一装置与所述第二装置之间的电压差而被供电;其中所述第三装置用于经由所述至少一个电压转换装置将所述第二提升的电压电平作为偏置电压
14、电平提供给所述设备中的至少一个元件;其中所述第三装置比所述第一装置、所述第二装置的至少其中之一小。权利要求书CN102340303ACN102340317A1/9页5两级电压电平转换技术领域0001本发明的领域涉及半导体电路,尤其涉及用于在第一值与提升的第二值之间切换的电压电平转换器VOLTAGELEVELSHIFTER。背景技术0002能够从第一电压电平切换到提升的第二电压电平的电路是公知的。例如在用于在不工作期间降低功耗的功率选通电路领域中,提供将电源选通给处理电路的头部HEADER器件或脚部FOOTER器件是公知的。这些器件采取晶体管的形式,该晶体管位于电源导轨RAIL之一与处理电路之间
15、,通过施加到它们的栅极的控制信号来导通或截止。当它们截止时,仍然有一些泄漏电流流过晶体管,然后流过处理电路,并且该泄漏电流增加器件的功耗,不提供任何好处。已经认识到这个问题并提出了一种解决方案,提供栅极偏置电压,该栅极偏置电压将施加到栅极的电压偏置到超过电源电压,导致有时候称为超级切断状态SUPERCUTOFFSTATE的状态。在这种状态下,通过晶体管的泄漏电流显著减少。0003这种系统的问题在于需要另外的电源来提供这种偏置电压。可以通过用于产生提升的核心电源的芯片上稳压器或通过电荷泵来提供这种电源。为了降低这种器件的尺寸要求,希望将这些器件的额定电流保持为小值。小电流还降低了与电源相关联的电
16、网要求,也就是将电流从电源分配到所需节点所需的连接的尺寸。但是,限制这种器件能够提供的电流量会由于加长某些转变所花费的时间而影响系统的性能。0004希望能够提供提升的电压电平却没有大量附加硬件要求。发明内容0005本发明的第一方面提供一种电压电平转换器,用于将输出信号从第一电压电平转换到第二电压电平,然后转换到进一步提升的第二电压电平,所述电压电平转换器包括输入端,用于接收输入信号;输出端,用于将输出信号输出;第一电源输入端,用于连接提供所述第一电压电平的第一电压源;第二电源输入端,用于连接提供所述第二电压电平的第二电压源;以及第三电源输入端,用于连接提供所述提升的第二电压电平的第三电压源;所
17、述电压电平转换器响应于所述输入信号中的预定变化,将所述第一电源输入端与所述输出端隔离,并将所述第二电源输入端连接到所述输出端,以及响应于所述输出信号达到预定值,将所述第三电源输入端连接到所述输出端,并将所述第二电源输入端与所述输出端隔离。0006本发明认识到性能速度、更小的电流泄漏和硬件尺寸的竞争要求。它解决了提供提升的电压电平同时限制这种提升的电压电平所需的附加电源的容量的问题。通过认识到在需要这种电压电平转换器的电路中会有大尺寸的提供该第二电压电平该电压电平是用作向电路供电的电源的电压电平的电压源和电网GRID,它实现了这一点。本发明利用了提供所需电流的这种电源和电网的存在,以达到从第一电
18、压向预定电压电平的转变,并且仅当达到该电平时它才切换为连接到提升的电压电平电源。说明书CN102340303ACN102340317A2/9页60007因此,通过这种方式,提升的电压电平电源只需要提供用于从预定电平转变到提升的第二电压电平的电流,因此,装置的电流需求明显小于将该电源用于向整个转变供电的情况。0008提供向第一预定电平然后向最终提升的第二电压电平的两级电压电平转换,这要求附加转换来控制到不同电压电平电源的连接。通常在这种电路中尽可能避免附加转换,因为它们增加装置的尺寸且降低性能,因为附加转换会增加等待时间。但是,本发明认识到与提升的电压源和电网需求中的减少相关联的优点超过与本发明
19、的电压电平转换器相关联的附加转换需求。0009在一些实施例中,所述预定值基本上等于所述第二电压电平。0010虽然可将电压电平转换器设计为对输出电压从第一电平到提升的第二电平的变化的供电在第一电压电平与第二电压电平之间的任何值处从第二电压源切换到第三电压源,但是在一些实施例中将其配置为使得它当预定值基本上等于第二电压电平时进行切换。显然第二电压源能提供直到第二电压电平的电压电平,并且由于如果它要用于向电路供电,就需要是大电压源,并且通常具有相关联的高容量电网,因此在从一个电压电平向下一个电压电平转变的过程中,尽可能长地利用该电压源和电网是有利的。0011这种布置的其他优点在于,虽然提升的电压可以
20、提高装置的性能,但是它并非其操作所必需,因此,使用第二电压源和电网来获得第二电压电平意味着,即使第三电压源或电网失效,装置在很多情况下仍将可靠地工作,虽然性能下降。0012在一些实施例中,所述电压电平转换器包括反相器,使得触发所述输出从所述第一电压电平变化为所述第二提升的电压电平的所述输入电压中的所述预定变化包括从所述第二电压电平变化为所述第一电压电平的输入信号变化。0013虽然电压电平转换器可以有多种形式,但是方便地,它可以是反相器。电平转换器在有些情况下可以是非反相的,以保持从输入到输出的逻辑等同性。但是,如果不要求从输入到输出的逻辑等同性,则优选一级即反相电平转换器来减少逻辑级以及来自一
21、直导通的电源的泄漏。0014在一些实施例中,所述电压电平转换器包括第一开关,响应于所述输入信号的第一值,将所述输出端连接到所述第一电源输入端,以及响应于所述输入信号的第二值,将所述输出端与所述第一电源输入端隔离;第二开关,响应于所述输入信号的第二值,将所述输出端连接到所述第二电源输入端,以及响应于所述输入信号的第一值,将所述第二电源输入端与所述输出端隔离;以及其他开关,响应于所述输出信号达到所述预定值,将所述第三电源输入端连接到所述输出端,所述其他开关形成反馈通道的一部分,所述反馈通道用于提供一信号,该信号用于通过改写OVERRIDE提供给所述第二开关的所述第二值来控制所述第二开关,使得所述第
22、二开关受控为响应于所述输出信号达到所述预定值,将所述输出信号与所述第二电源输入端隔离。0015形成电压电平转换器的一种方式是从多个开关形成,所述多个开关配置为响应于输入信号改变值和输出信号达到预定值而开关。当输出值达到预定值时将输出端连接到第三电压源的其他开关被布置为也提供反馈通道,以保证此时将第二电压源连接到输出端的开关与输出端隔离,因此没有第三电压源赖以与第二电压源相连接的通道。0016在一些实施例中,所述第二开关显著大于所述其他开关的任何一个。说明书CN102340303ACN102340317A3/9页70017通过允许由第二电压源经由第二开关对从第一电压电平到预定电压电平的转变进行供
23、电,该开关可以是大开关,并且因此能承载大量电流并使得这种转变能够迅速进行。可将控制后一转变的其他开关制造得更小,承载更少的电流,虽然这样意味着后一转变更慢,但还是一旦已经获得向第二电压电平的转变,电路就能正确工作更为重要。因此,假设预定电压电平非常接近第二电压电平,则后一转换中任何延迟都不会很影响工作性能,而只是稍微增加泄漏电流。0018在一些实施例中,所述其他开关被配置为使得所述输出电压电平从所述预定值变化为所述第二提升的电压电平的速度低于所述输出电压电平从所述第一电压电平变化为所述预定值的速度。0019如上所述,其他开关的尺寸影响输出电压电平从预定值向提升的第二电压电平变化的速度。因此,只
24、要合适,就可选择更小的其他开关,并且电压电平的这种变化速度可以允许慢速。0020在一些实施例中,所述电压电平转换器包括三态电压电平转换器,所述三态电压电平转换器被配置为输出三种不同的输出信号将所述输入信号与所述输出信号隔离的高阻抗三态输出信号、所述第一电压电平和所述第二提升的电压电平,所述电压电平转换器包括其他输入端,用于接收三态控制信号,所述电压电平转换器响应于具有预定值的所述三态控制信号,通过将所述输入端与所述输出端隔离来产生所述三态输出信号。0021电压电平转换器可以是具有其他三态输出的三态电压电平转换器,在该状态中将输入端与输出端隔离。在一些实施例中,这是有利的,所述实施例例如是电压电
25、平转换器控制还具有保持模式的功率控制开关的情况。见下文所述。0022本发明的第二方面提供一种包括至少一个根据本发明第一方面的电压电平转换器的设备,所述设备进一步包括第一、第二和第三电源,分别被配置为提供所述第一电压电平、所述第二电压电平以及所述提升的第二电压电平;电路,通过所述第一电源与所述第二电源之间的电压差供电;其中所述第三电源被配置为经由所述至少一个电压电平转换器将所述第二提升的电压电平作为偏置电压电平提供给所述设备中的至少一个元件;其中所述第三电源与所述第一电源、所述第二电源的至少其中之一相比是小电源。0023如果通过第一电压电平与第二电压电平之间的电压差向电路供电,那么这些电压电平电
26、源和它们的供应电网必然大。利用这一点并允许大部分从第一电平到提升的第二电平的转变通过第二电压源供电,这意味着可以提供具有小的第三电压源的设备,并且与第三电压源和其他电压源的其中之一同样大的系统相比,该电压源所需的附加面积减小。0024在一些实施例中,所述设备包括数据处理设备,所述数据处理设备包括处理电路,所述处理电路通过所述第一电源与所述第二电源之间的电压差供电,所述设备进一步包括至少一个功率控制开关,布置在所述第一电源和所述第二电源的其中之一与所述处理电路之间,所述至少一个功率控制开关受来自所述至少一个电压电平转换器的所述输出信号控制,所述至少一个功率控制开关响应于所述至少一个电压电平转换器
27、,该电压电平转换器输出所述第一电压电平,将所述第一电源和所述第二电源的所述其中之一连接到所述处理电路;所述第二电压电平,将所述第一电源和所述第二电源的所述其中之一与所述处理电路隔离;以及所述提升的第二电压电平,将所述第一电源和所述第二电源的所述其中之一与所述处理电路隔离并提供通过所述功率控制开关的更小的泄漏电流。说明书CN102340303ACN102340317A4/9页80025提供提升的电压电平在具有功率控制开关的设备中特别方便,因为该提升的电压电平可用于确保这些功率开关当它们处于可称为超级切断状态的状态时并非仅仅是截止,而是有更小的泄漏电流。0026在一些实施例中,所述至少一个电压电平
28、转换器包括三态电压电平转换器;所述三态电压电平转换器被配置为输出三种不同的输出信号将所述输入信号与所述输出信号隔离的高阻抗三态输出信号、所述第一电压电平和所述第二提升的电压电平,所述电压电平转换器包括其他输入端,用于接收三态控制信号;所述三态电压电平转换器响应于具有预定值的所述三态控制信号,通过将所述输入端与所述输出端隔离来产生所述三态输出信号;所述数据处理设备进一步包括保持模式开关,受所述三态控制信号控制,并连接在所述至少一个功率控制开关的输出端与所述至少一个功率控制开关的控制输入端之间,其中响应于具有预定值的所述三态控制信号,所述三态电压电平转换器输出所述高阻抗三态输出并且所述三态开关导通
29、,使得所述至少一个功率控制开关的所述输出端连接到所述控制输入端,并且不同地提供给所述处理电路的所述电压的一部分在所述至少一个功率控制开关两端下降。0027对于具有保持状态的设备,三态电压电平转换器是方便的,因为它可以提供高阻抗输出,高阻抗输出将数据输入端与功率控制开关的输入端隔离,并使得可以控制该输入端的电压电平,而没有来自电压电平转换器的输入端的干扰。0028在一些实施例中,所述数据处理设备包括SCMOS设备。这是一种具有超级切断状态的MOS设备,即,当开关的控制输入端的电压电平是提升的电压电平时,它进入超级切断状态且泄漏电流减少。0029在一些实施例中,所述设备包括半导体存储器存储装置,该
30、装置包括多个存储单元,用于存储数据;至少两个访问控制线,分别用于控制到所述多个存储单元的至少其中之一的访问;其中响应于表示待访问的被选择单元的访问控制信号,所述至少一个电压电平转换器受控向所述访问控制线的其中之一输出所述提升的第二电压电平,以在所述访问控制线上对电压电平提供一个提升。0030本发明实施例特别有用的一种其他情况是在半导体存储器存储装置中,其中可将提升的电压电平用于提升访问控制线电压,当向半导体存储器写入时访问控制线电压有用,因为它使得存储单元能够切换值。存储器中的存储单元的设计具有竞争的需求。它们必须能够保持它们的存储值,此外还必须能够在写入时切换值。因此,在写入期间向访问控制线
31、提供提升是确保稳定单元在需要时仍然可以切换值的方便方式。如上所述,这是一种提供该提升的电压电平的方便且面积高效的方式。0031本发明的第三方面提供一种将输出信号从第一电压电平转换到第二电压电平,然后将所述输出信号电压转换到进一步提升的第二电压电平的方法,所述方法包括以下步骤将提供所述第一电压电平的第一电压源连接到第一电源输入端;将提供所述第二电压电平的第二电压源连接到第二电源输入端;以及将提供所述提升的第二电压电平的第三电压源连接到第三电源输入端;接收具有第一值的输入信号;响应于所述输入信号的接收,将所述第一电压源连接到输出端,以产生所述输出信号;接收从所述第一值变化为第二值的输入信号;响应于
32、所述变化将所述第一电源输入端与所述输出端隔离;将所述第二电源输入端连接到所述输出端;以及响应于所述输出信号达到预定值将所述第三电源输入说明书CN102340303ACN102340317A5/9页9端连接到所述输出端并将所述第二电源输入端与所述输出端隔离。0032本发明的第四方面提供一种电压转换装置,用于将输出信号从第一电压电平转换为第二电压电平,然后转换为进一步提升的第二电压电平,所述电压转换装置包括输入装置,用于接收输入信号;输出装置,用于将输出信号输出;第一电源输入装置,用于连接提供所述第一电压电平的第一电压源;第二电源输入装置,用于连接提供所述第二电压电平的第二电压源;以及第三电源输入
33、装置,用于连接提供所述提升的第二电压电平的第三电压源;所述电压电平转换装置响应于所述输入信号中的预定变化,用于将所述第一电压源与所述输出端隔离,并用于将所述第二电源输入装置连接到所述输出端,以及响应于所述输出信号达到预定值,用于将所述第三电源输入装置连接到所述输出装置,并将所述第二电源输入装置与所述输出装置隔离。0033本发明的第五方面提供一种包括至少一个根据本发明第四方面的电压转换装置的设备,所述设备进一步包括用于提供电压的三个装置,第一装置用于提供所述第一电压电平、第二装置用于提供所述第二电压电平、第三装置用于提供所述提升的第二电压电平;电路,通过所述第一装置与所述第二装置之间的电压差供电
34、;其中所述第三装置用于经由所述至少一个电压转换装置将所述第二提升的电压电平作为偏置电压电平提供给所述设备中的至少一个元件;其中所述第三装置与所述第一装置、所述第二装置的至少其中之一相比为小。0034根据下文示意性实施例的详细描述,本发明的上述和其他目的、特征以及优点将变得显而易见,下面结合附图来阅读示意性实施例。附图说明0035图1示出根据本发明实施例用于提供提升的输出电压的反相器;0036图2以电路形式示出图1的反相器;0037图3示出时序图,说明图2的电路中不同节点处的电压怎样随输入电压中的变化而变化;0038图4示出使用中的图1的反相器控制电路中的头部功率控制晶体管;0039图5示出使用
35、中的图1的反相器在存储器单元中提供提升的字线电压;0040图6示出根据本发明实施例的三态反相器;0041图7示出使用图6的这种三态反相器控制处理电路中的头部晶体管;0042图8给出现有技术和本发明实施例的电路的电流要求的实例;以及0043图9示出流程图,说明根据本发明实施例的方法。具体实施方式0044图1示意性地示出根据本发明实施例的反相器5,反相器5配置为响应于输入信号变化提供提升的输入电压VGB。反相器5具有电源输入端6和电源输入端7以及电源输入端8,电源输入端6用于接收VDDG,VDDG是电路的高电源导轨的电压电平,电源输入端7接收来自提升的电压源VGB的电压,VGB是比高电压导轨的电压
36、电平更高的电压电平,电源输入端8接收低电压电平VSS。0045反相器5具有输入端10和输出端12,且响应于高输入信号,反相器输出低输出信说明书CN102340303ACN102340317A6/9页10号。如果输入信号下降则反相器输出电平上升。一开始它上升到VDDG的电平,然后它上升得更高,到达提升的VGB电平。如图示意性所示,从低电平到VDDG的上升以一个速度发生,而从VDDG到VGB的上升更慢地发生。这些电平上升的速度取决于反相器5中器件的尺寸。到VDDG的电平的上升影响电路的定时,并且因此应当迅速,而到附加偏置电压的上升只是减少泄漏电流,因此不是很快地达到该电平并非那么重要。因此,有利的
37、是允许电压电平从VDDG到VGB的上升发生得更慢,并使用更小的元件,从而节约面积。0046图2示出电路图,说明本发明实施例的反相器5。在该实施例中将输入信号显示为从1变化为0,并将晶体管的不同状态显示为响应于此而变化。当要将该反相器用于控制电路的功率晶体管时,将输入信号指定为休眠SLEEP信号,控制的方式为在此情况下由于它们是PMOS晶体管,因此当休眠信号变低且输出上升时,它使这些晶体管截止且电路进入低功率模式。对输出电压的提升确保在该低功率模式期间,这些功率晶体管处于超级切断状态,因此它们的泄漏电流减少。0047本实施例中我们有不同的晶体管20、30、40、50、60、70、80和90,它们
38、用于控制高电压线VDDG以及提升的高电压VGB与输出端的连接。0048本电路的操作发生如下。当输入信号为高时,晶体管20导通ON且低信号在输出端输出。该低信号将晶体管30导通且高信号被传输到节点N2,使得1出现在该节点。这样将晶体管60截止OFF且将输出端与电源VDDG隔离。输入端的1和输出端的0意味着晶体管90导通,并且来自输入端的1被传输到节点N4且将晶体管80截止。这将偏置栅极电压1与输出端隔离。输出端的0也将栅极70导通,但是由于栅极90截止,因此1不会被进一步传输。0049当输入信号下降为0时,它随后将晶体管20截止且将输出端与VSS隔离。一开始,之前输出的0意味着栅极30仍然导通并
39、且因此,输入端的0被传输到节点N2并且它下降至0。它将晶体管60导通并且来自电源VDDG的电流通过晶体管60发送并将输出电平升高至1。晶体管60是具有低阻抗的大晶体管,并且因此传输高电流,并且输出端从0至1的转变是迅速的。当输出到达1时,晶体管90被导通,并且输入端的0通过晶体管90传输到晶体管80的栅极,这样将晶体管80导通。这意味着输出电压从1上升到1。该电压电平的升高是通过提升的电压源VGB提供的。当提升之前输出为1时,在晶体管70的输入端为1,而在其源极为1,意味着它只是部分地截止。通过晶体管90传输的1进入晶体管50并将其截止,将晶体管40导通。这意味着N2处的0通过晶体管40上升到
40、1,并且这将晶体管60截止。输出端的1也被传输到晶体管70的栅极并将其完全截止。因此,如图所示,一旦输出电平到达电源VDDG的电平,晶体管的配置就意味着晶体管80导通并且可将提升的电源提供给输出端,但是同时,电源VDDG与该输出端隔离,防止从提升的电源VBG到电源VDDG的任何电流通道。0050图3示出时序图,显示图2的电路的节点N2和N4的电压怎样随输入信号而变化。因此,当输入信号高时,节点N2的电压也为高,达1V,即电源线的电压,而N4的电压为提升的125V。这是因为晶体管70导通,而晶体管80截止。如果输入电压下降为低,则节点N2的电压也下降。这是对晶体管40的截止作出的响应。节点N2的
41、电压低导致晶体管60导通。晶体管60是设计用于连接高电源线VDDG的大晶体管,因此它能承载大量电流,并且因此输出信号的电压电平迅速上升到1。如果它达到1,则它用于将NMOS晶体管90导通,晶说明书CN102340303ACN102340317A7/9页11体管90将0传输到晶体管80的栅极并将其导通,这然后将提升的电压电平提供给输出端。晶体管70输入端的这种高电平将其截止,这进而将晶体管40导通,使得N2的电压上升到提升的电压电平125V,并将晶体管60截止,从而将电源电压VDDG与经由输出线的电源电压VGB隔离。0051如果输入电压信号再次变高,则N2的电压从1V下降到1V,而由于晶体管70
42、导通,因此N4的电压上升到1。0052因此,不同晶体管用于先将高电压源VDDG连接到输出端,然后将提升的高电压源连接到输出端,同时将输出端与高电压源VDDG隔离。0053图4示出根据本发明实施例的反相器的使用。在本实施例中,反相器5用于控制头部晶体管100,头部晶体管100用于选通处理电路110。因此,响应于通过反相器5输出的信号,提供VDDG的高电压导轨120经由并联排列的晶体管100连接到实际电源导轨130。因此,当输出0时,这些头部晶体管100导通并且实际电源导轨130大约为VDDG。如果在反相器5接收到指示电路要进入低功率模式的休眠信号,则输出高输出信号,其将头部晶体管100截止。反相
43、器5是两级反相器,参照图1和图2所示。因此,一开始电压电平上升到足以将头部晶体管100截止的VDDG。然后它进一步上升到125V的栅极偏置电压,这意味着晶体管100进入它们的超级截止状态,超级截止状态减少通过这些头部晶体管100的任何泄漏电流。0054在本实施例中,多个驱动器电路140被示出连接到三级反相器5。这些电路在这里引入对晶体管的接通的延迟。这是因为很多电路有大量成组布置的头部晶体管。如果所有头部晶体管都同时导通,就会有大电流峰值,并且这会导致电源电压下降,如果下降到低于临界值,就会导致电路的某些故障。因此,将电流的接通布置为使得它们不会全部一起导通,而是相互之间有微小延迟地导通。这些
44、驱动器电路140用于引入该延迟。当将电路断开时不必提供延迟。0055图5示出根据本发明实施例的电压电平转换装置的替代性使用。在本实施例中,反相器5用于提升字线上的电压,字线用于访问存储器单元7。关于存储器单元的一个问题是,如果它们要关于数据保持是鲁棒ROBUST的,那么它们可能很难覆写OVERWRITE。写入要求这些单元的状态翻转FLIP。这些单元一般是交叉耦合反相器,如果它们对于电压波动而言是稳定的,则它们确实变得难以覆写。通过在写入期间向字线电压提供提升,使得这些单元能够被翻转,已经解决了这个问题。根据本发明实施例的反相器5是以面积高效方式将这种提升提供给字线的一种方便方式。0056图6示
45、出根据本发明实施例的三态两级反相器。图1至图4的反相器5具有0或1VBG的输出状态。对于反相器来说也具有三态高阻抗输出可能是方便的,在所述三态高阻抗输出中将输入信号与输出信号隔离。该三态三级反相器比图2的两级反相器增加了晶体管。这些附加反相器包括晶体管210和晶体管220、230、240和250,晶体管210用于控制三态输出。当保持信号表示要进入该休眠状态时,这些晶体管帮助产生高阻抗状态。因此,该三态两级反相器具有三种可能的输出三态高阻抗输出、0输出以及提升的电压输出。0057在图7所示的电路中这可以用于控制头部晶体管100。在这种情况下,有一个附加的二极管连接的晶体管140,它被布置在头部晶
46、体管之间,用于产生保持状态。因此,在这种情况下,晶体管100和140可用于产生三种可能状态向电路110供电时的导通状态、当晶说明书CN102340303ACN102340317A8/9页12体管100截止且没有向电路110供电时的截止状态以及保持状态,当处于所述保持状态时,将更小的电压电平施加到实际电源导轨130使得有充足的电压在电路110中保持该状态,但是该电路两端有更小的电压降,因此功率泄漏水平更低。0058当二极管连接的晶体管140导通时,它提供头部晶体管100的输出端与它们的栅极之间的连接,使得它们两端有电压降,该电压降取决于头部晶体管100的阈值电压。因此,实际电压导轨上的输出电压不
47、再是VDDG,而是VDDG减去这些头部晶体管的阈值电压。这就是三态状态,其中输入到三态反相器55的输入信号与其输出隔离,这样停止了该输出与二极管连接的晶体管140的源极的电压电平的竞争。如同图4的实施例,反相器55能够输出提升的电压电平VGB,因此能产生用于头部晶体管100的超级切断状态。有一个附加的三态反相器5,其用于产生该提升的信号,用于输入到二极管连接的晶体管140并停止通过该晶体管140的任何泄漏通道。0059图8示出与根据现有技术的仅使用提升的电压源用于完整转变的单级电压电平转换器相比,根据本发明实施例的两级电压电平转换器的电流流动的一些实例。行300涉及具有现有技术的电压电平转换器
48、的电路,310涉及具有快速压摆率FASTSLEWRATE的两级反相器,320涉及具有慢速压摆率SLOWSLEWRATE的两级反相器,330涉及具有慢速压摆率的三态两级反相器,340涉及图7所示的慢速压摆率三态布置。0060如上所述,从VDDG到提升的电平VGB的电压电平的变化速度可以是慢速,这是因为此时电路已经截止但不是处于超级切断状态。延迟进入超级切断状态只是增加泄漏电流,而不会影响操作性能,因此,在很多情况下是可以接受的。因此,在一些实施例中选择小晶体管用于馈送提升的电压电平的晶体管,即图2中的晶体管70、80和90,这可能是有利的。这样会导致从VDDG到VGB的慢速压摆率上升,就像在图8
49、底部的图表中所示。在其他实施例中,在这些点有更大的晶体管是可以接受的,因此,对于转变的这后一部分可获得快速压摆率。0061在现有技术中从提升的电压源得到的峰值电流是223毫安,而在本发明的任一个实施例中的提升的电压源得到的最大电流是927微安。这显著更低。这是因为用于产生电压电平中这种变化的电流是从VDDG源产生。因为要求这样来向电路的其余部分供电,所以需要它是大电源,并且将它连接到电路的电网类似地大。因此,在现有技术中需要足以提供223毫安的峰值电流的电网和提升的电源,而本发明的实施例只需要927微安的峰值电流,或者如果慢速压摆率是可以接受的,那么只需要174微安的峰值电流。0062图表还示出快速压摆率与慢速压摆率之间转变时间和峰值电流中的差异。这些差异很明显,因此,在一些具有小电源非常重要的实施例中,可证明慢速压摆率是有利的。0063图9示出流程图,说明根据本发明实施例的方法中的步骤。在该方法中,一开始接收高输入信号,响应于此,将低电压源连接到输出端并输出低输出信号。然后确定输入信号是否已经转变为低值。如果输入信号已经转变为低值,则将电源VDDG连接到输出端并输出高输出信号。然后确定输出电压是否已经获得该VDDG值。当输出电压已经获得该VDDG值时,将提升的输出电压连接到输出端,并将VDDG输出与该输出端隔离,因此,输出提升值。然后确定输入信号是否已经转变为更