欢迎来到专利查询网! | 帮助中心 查专利用我们更专业!
专利查询网
换一换
首页 专利查询网 > 资源分类 > PDF文档下载
分享到微信 分享到微博 分享到QQ空间

地图区域词识别方法、装置、电子设备和存储介质.pdf

  • 资源ID:10224321       资源大小:640.55KB        全文页数:15页
  • 资源格式: PDF        下载积分:30金币
快捷下载 游客一键下载
账号登录下载
三方登录下载: 微信开放平台登录 QQ登录
下载资源需要30金币
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 
账号:
密码:
验证码:   换一换
  忘记密码?
    
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

地图区域词识别方法、装置、电子设备和存储介质.pdf

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 202011027587.7 (22)申请日 2020.09.25 (71)申请人 北京百度网讯科技有限公司 地址 100085 北京市海淀区上地十街10号 百度大厦2层 (72)发明人 李岩岩段建国 (74)专利代理机构 北京品源专利代理有限公司 11332 代理人 孟金喆 (51)Int.Cl. G06F 40/289(2020.01) G06K 9/62(2006.01) (54)发明名称 一种地图区域词识别方法、 装置、 电子设备 和存储介质 (57)摘要 本申请公开了一

2、种地图区域词识别方法、 装 置、 电子设备和存储介质, 涉及人工智能领域, 具 体涉及大数据、 智能交通技术。 具体实现方案为: 获取地图的兴趣点POI数据; 将所述POI数据中的 至少一个文本词作为目标词, 根据所述目标词所 属POI数据的位置信息进行聚类处理; 根据位置 信息的聚类结果, 对所述目标词进行地图区域词 的识别。 本申请实施例中, 在POI数据中直接识别 区域词, 避免了通过人工方式确定区域词, 提升 了区域词的识别效率; 而且相比于通过爬虫技术 爬取区域词, 利用所有的POI数据进行区域词挖 掘, 得到的区域词更全面。 权利要求书2页 说明书8页 附图4页 CN 112016

3、326 A 2020.12.01 CN 112016326 A 1.一种地图区域词识别方法, 包括: 获取地图的兴趣点POI数据; 将所述POI数据中的至少一个文本词作为目标词, 根据所述目标词所属POI数据的位置 信息进行聚类处理; 根据位置信息的聚类结果, 对所述目标词进行地图区域词的识别。 2.根据权利要求1所述的方法, 其中, 将所述POI数据中的至少一个文本词作为目标词, 包括: 针对每个所述POI数据, 生成对应的词位置集合, 其中, 所述词位置集合包括至少一个 元素, 且每个元素包括一个文本词和文本词所属POI数据的位置信息; 将各个所述词位置集合中的至少一个文本词作为目标词。

4、3.根据权利要求2所述的方法, 其中, 根据所述目标词所属POI数据的位置信息进行聚 类处理, 包括: 确定各个所述词位置集合中包括所述目标词的目标元素, 并获取所述目标元素中包括 的目标词所属POI数据的位置信息; 对所述目标词所属POI数据的位置信息进行聚类。 4.根据权利要求2所述的方法, 其中, 针对每个所述POI数据, 生成对应的词位置集合, 包括: 针对任一POI数据, 获取该POI数据中的POI名称和位置信息; 对所述POI名称进行分词处理, 得到至少一个文本词; 基于至少一个文本词和所述位置信息, 生成该POI数据对应的词位置集合。 5.根据权利要求3所述的方法, 其中, 在对

5、所述目标词所属POI数据的位置信息进行聚 类之前, 还包括: 确定所述目标元素的数量, 并在所述目标元素的数量大于第一数量阈值时, 触发执行 对所述目标词所属POI数据的位置信息进行聚类的操作。 6.根据权利要求1所述的方法, 其中, 根据位置信息的聚类结果, 对所述目标词进行地 图区域词的识别, 包括: 获取聚类结果中聚类中心的数量, 若该数量不大于第二预设数量阈值, 则确定所述目 标词为地图区域词。 7.根据权利要求1所述的方法, 其中, 根据所述目标词所属POI数据的位置信息进行聚 类处理, 包括: 采用基于密度的聚类算法, 对所述目标词所属POI数据的位置信息进行聚类处理。 8.一种地

6、图区域词识别装置, 包括: POI数据获取模块, 用于获取地图的兴趣点POI数据; 目标词确定与聚类模块, 用于将所述POI数据中的至少一个文本词作为目标词, 根据所 述目标词所属POI数据的位置信息进行聚类处理; 区域词识别模块, 用于根据位置信息的聚类结果, 对所述目标词进行地图区域词的识 别。 9.根据权利要求8所述的装置, 其中, 目标词确定与聚类模块, 包括: 词位置集合生成单元, 用于针对每个所述POI数据, 生成对应的词位置集合, 其中, 所述 权利要求书 1/2 页 2 CN 112016326 A 2 词位置集合包括至少一个元素, 且每个元素包括一个文本词和文本词所属POI数

7、据的位置 信息; 目标词确定单元, 用于将各个所述词位置集合中的至少一个文本词作为目标词。 10.根据权利要求9所述的装置, 其中, 目标词确定与聚类模块, 包括: 目标元素确定单元, 用于确定各个所述词位置集合中包括所述目标词的目标元素, 并 获取所述目标元素中包括的目标词所属POI数据的位置信息; 聚类单元, 用于对所述目标词所属POI数据的位置信息进行聚类。 11.根据权利要求9所述的装置, 其中, 词位置集合生成单元具体用于: 针对任一POI数据, 获取该POI数据中的POI名称和位置信息; 对所述POI名称进行分词处理, 得到至少一个文本词; 基于至少一个文本词和所述位置信息, 生成

8、该POI数据对应的词位置集合。 12.根据权利要求10所述的装置, 其中, 还包括: 触发模块, 用于在对所述目标词所属POI数据的位置信息进行聚类之前, 确定所述目标 元素的数量, 并在所述目标元素的数量大于第一数量阈值时, 触发执行对所述目标词所属 POI数据的位置信息进行聚类的操作。 13.根据权利要求8所述的装置, 其中, 区域词识别模块具体用于: 获取聚类结果中聚类中心的数量, 若该数量不大于第二预设数量阈值, 则确定所述目 标词为地图区域词。 14.根据权利要求8所述的装置, 其中, 目标词确定与聚类模块还用于: 采用基于密度的聚类算法, 对所述目标词所属POI数据的位置信息进行聚

9、类处理。 15.一种电子设备, 其特征在于, 包括: 至少一个处理器; 以及 与所述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有可被所述至少一个处理器执行的指令, 所述指令被所述至少一个处 理器执行, 以使所述至少一个处理器能够执行权利要求1-7中任一项所述的地图区域词识 别方法。 16.一种存储有计算机指令的非瞬时计算机可读存储介质, 其特征在于, 所述计算机指 令用于使所述计算机执行权利要求1-7中任一项所述的地图区域词识别方法。 权利要求书 2/2 页 3 CN 112016326 A 3 一种地图区域词识别方法、 装置、 电子设备和存储介质 技术领域 0001 本申请涉及

10、人工智能领域, 尤其涉及大数据、 智能交通技术, 特别涉及一种地图区 域词识别方法、 装置、 电子设备和存储介质。 背景技术 0002 区域词是地图的组成部分, 区域词对地图及LBS(Location Based Services, 基于 位置的服务)相关应用有十分重要的价值。 0003 目前, 区域词主要通过用户UGC(User Generated Content, 用户原创内容)上传、 专家PGC(Professionally Generated Content, 专业生产内容)采集以及网络爬取等方式 进行识别。 0004 但现有技术存在一定不足: 对用户积极性的依赖较高, 且人工成本较高

11、, 区域词识 别结果的覆盖率较低。 发明内容 0005 本申请实施例提供了一种地图区域词识别方法、 装置、 设备和存储介质。 0006 根据第一方面, 提供了一种地图区域词识别方法, 包括: 0007 获取地图的兴趣点POI数据; 0008 将POI数据中的至少一个文本词作为目标词, 根据目标词所属POI数据的位置信息 进行聚类处理; 0009 根据位置信息的聚类结果, 对目标词进行地图区域词的识别。 0010 根据第二方面, 提供了一种地图区域词识别装置, 包括: 0011 POI数据获取模块, 用于获取地图的兴趣点POI数据; 0012 目标词确定与聚类模块, 用于将POI数据中的至少一个

12、文本词作为目标词, 根据目 标词所属POI数据的位置信息进行聚类处理; 0013 区域词识别模块, 用于根据位置信息的聚类结果, 对目标词进行地图区域词的识 别。 0014 根据第三方面, 提供了一种电子设备, 包括: 0015 至少一个处理器; 以及 0016 与至少一个处理器通信连接的存储器; 其中, 0017 存储器存储有可被至少一个处理器执行的指令, 指令被至少一个处理器执行, 以 使至少一个处理器能够执行本申请任意实施例的地图区域词识别方法。 0018 根据第四方面, 提供了一种存储有计算机指令的非瞬时计算机可读存储介质, 计 算机指令用于使计算机执行本申请任意实施例的地图区域词识别

13、方法。 0019 根据本申请的技术, 实现了无需人工上传即可识别区域词以及提升区域词识别结 果的覆盖率的效果。 0020 应当理解, 本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特 说明书 1/8 页 4 CN 112016326 A 4 征, 也不用于限制本公开的范围。 本公开的其它特征将通过以下的说明书而变得容易理解。 附图说明 0021 附图用于更好地理解本方案, 不构成对本申请的限定。 其中: 0022 图1是根据本申请实施例的地图区域词识别方法的流程示意图; 0023 图2是根据本申请实施例的地图区域词识别方法的流程示意图; 0024 图3是根据本申请实施例的地图区域词识

14、别方法的流程示意图; 0025 图4是根据本申请实施例的地图区域词识别装置的结构示意图; 0026 图5是用来实现本申请实施例的地图区域词识别方法的电子设备的框图。 具体实施方式 0027 以下结合附图对本申请的示范性实施例做出说明, 其中包括本申请实施例的各种 细节以助于理解, 应当将它们认为仅仅是示范性的。 因此, 本领域普通技术人员应当认识 到, 可以对这里描述的实施例做出各种改变和修改, 而不会背离本申请的范围和精神。 同 样, 为了清楚和简明, 以下的描述中省略了对公知功能和结构的描述。 0028 图1是根据本申请实施例的地图区域词识别的方法的流程示意图, 本实施例可适 用于服务器从

15、已有的地图兴趣点POI(Point of Interest)数据中识别区域词, 以将识别的 区域词用于地图等相关应用的情况。 该方法可由一种地图区域词识别装置来执行, 该装置 采用软件和/或硬件的方式实现, 优选是配置于电子设备中, 例如配置在服务器上。 0029 参见图1, 地图区域词识别的方法具体如下: 0030 S101、 获取地图的兴趣点POI数据。 0031 可选的, 从地图数据库中获取全量的兴趣点POI数据, 每条POI数据中可以包括POI 名称、 位置、 类别以及附近的酒店饭店商铺等信息。 0032 S102、 将POI数据中的至少一个文本词作为目标词, 根据目标词所属POI数据

16、的位 置信息进行聚类处理。 0033 本申请实施例中, 由于区域是POI名称的组成部分, 因此在POI数据中确定待识别 的区域词(即目标词)时, 可选的, POI数据中的POI的名称对应的文本词作为目标词, 或者先 对POI数据中的POI名称进行切词处理, 并将得到的分词结果中的至少一个文本词作为目标 词。 0034 其中, 位置信息可选的为POI的经纬度, 目标词所属POI数据是指POI名称中包括目 标词的POI数据。 由此在得到目标词后, 可从获取的全量POI数据中确定POI名称包括目标词 的POI数据, 进而获取包括目标词的POI数据的位置信息。 由于POI名称中包括目标词的POI 数据

17、的数量可能是多个, 因此目标词所属POI数据的位置信息的数量也是多个, 因此可对根 据目标词所属POI数据的位置信息进行聚类处理。 0035 在一种可选的实施方式中, 根据目标词所属POI数据的位置信息进行聚类处理, 包 括: 采用基于密度的聚类算法, 对目标词所属POI数据的位置信息进行聚类处理。 具体的聚 类过程如下: 步骤1, 确定半径r和最小数量阈值, 从一个没有被访问过的任意位置信息点开 始, 以该点为中心, r为半径的圆内包含的位置信息点的数量是否大于或等于最小数量阈 值, 如果大于或等于最小数量阈值, 则该位置信息点被标记为核心点,反之则会被标记为噪 说明书 2/8 页 5 CN

18、 112016326 A 5 声点。 步骤2, 重复步骤1的操作, 如果一个噪声点存在于某个以核心点为半径的圆内, 则这 个点被标记为边缘点, 反之仍为噪声点。 重复上述步骤, 直到所有的位置信息点都被访问 过。 由此可以得到聚类结果。 需要说明的是, 之所以选择基于密度的聚类算法, 是因为聚类 速度快且能够有效处理噪声点和发现任意形状的空间聚类。 0036 S103、 根据位置信息的聚类结果, 对目标词进行地图区域词的识别。 0037 在一种可选的实施方式中, 根据位置信息的聚类结果, 对目标词进行地图区域词 的识别, 包括: 获取聚类结果中聚类中心的数量, 若该数量不大于第二预设数量阈值,

19、 则确 定所述目标词为地图区域词, 其中第二预设数量阈值示例性的为3, 也可以为其它数值, 在 此不做具体限定。 需要说明的是, 根据聚类结果中聚类中心的数量确定一个目标词是否为 区域词, 可以提升确定区域词的效率和准确性。 0038 示例性的, 目标词为 “上地” , 对所有POI名称中包括 “上地” 的POI数据的位置信息 进行聚类后, 得到的聚类数量为1(即一个聚类中心), 则目标词 “上地” 为区域词。 又如, 目标 词为 “美食” , 对所有POI名称中包括 “美食” 的POI数据的位置信息进行聚类后, 得到的聚类 数量成百上千, 也即有成百上千各聚类中心, 则该词不是一个区域词。

20、0039 本申请实施例中, 通过在POI数据中确定目标词, 并对目标词所属POI数据的位置 信息进行聚类, 并根据拒了结果识别区域词。 由此实现了在已有POI数据中直接识别区域 词, 避免了通过人工方式确定区域词, 提升了区域词的识别效率。 而且相比于通过爬虫技术 爬取区域词, 利用所有的POI数据进行区域词挖掘, 得到的区域词更全面。 0040 图2是根据本申请实施例的地图区域词识别方法的流程示意图, 本实施例是在上 述实施例的基础上进行优化, 参见图2, 该地图区域词识别的方法具体如下: 0041 S201、 获取地图的兴趣点POI数据。 0042 S202、 针对每个POI数据, 生成对

21、应的词位置集合, 其中, 词位置集合包括至少一个 元素, 且每个元素包括一个文本词和文本词所属POI数据的位置信息。 0043 在一种可选的实施方式中, 针对每个POI数据, 生成对应的词位置集合, 包括: 0044 S2021.针对任一POI数据, 获取该POI数据中的POI名称和位置信息。 0045 可选的, 在获取全量POI数据中各POI数据的POI名称和位置信息后, 生成一个POI 数据集合P(n0, l0), (n1, l1), .(ni, li)., (nn, ln), 其中, n等于获取的POI数据的总 数, ni表示POI名称, li表示名称为ni的POI数据的位置信息。 00

22、46 S2022.对POI名称进行分词处理, 得到至少一个文本词。 0047 由于POI的名称包括多个词, 而为了更多的识别区域词, 可选的对POI数据集合中 的任一POI名称进行分词, 得到至少一个文本词。 示例性的, 对集合P中的任一元素Pi, 取ni进 行分词处理, 得到分词集合(w0, w1, .wk), k表示ni切词后得到的词的数量。 0048 S2023.基于至少一个文本词和位置信息, 生成该POI数据对应的词位置集合。 0049 示例性的, 对集合P中的任一元素Pi, 利用切切后得到的所有词和该POI的位置, 构 建元素Pi对应的词位置集合Wi(w0, li), (w1, li

23、), .(wk, li)。 由此可知, 每个POI数据对 应的词位置集合包括至少一个元素, 且每个元素包括一个文本词和文本词所属POI数据的 位置信息。 0050 在此需要说明的是, 通过对每个POI数据的POI名称进行切词, 得到至少一个文本 词, 由此可以保证挖掘出足够的目标词, 进而保证从目标词中识别出更多的区域词, 以保证 说明书 3/8 页 6 CN 112016326 A 6 区域词的覆盖率。 进而构建词位置集合相当于建立的文本词和文本词所属POI数据的位置 信息的映射关系, 使得在确定某一个文本词为目标词后, 可以快速的确定目标词所属POI数 据的位置信息。 0051 S203、

24、 将各个词位置集合中的至少一个文本词作为目标词。 0052 可选的, 可将任意一个或多个文本词直接作为目标词。 在此需要说明的是, 由于集 合中存在一些明显不是区域词的文本词, 因此在确定目标词之前, 可将该类文本词过滤掉, 示例性的, 可通过预设的非区域词库进行过滤。 0053 S204、 确定各个词位置集合中包括目标词的目标元素, 并获取目标元素中包括的 目标词所属POI数据的位置信息。 0054 在确定目标词后, 确定各个词位置集合中包括目标词的目标元素, 也即确定了所 有POI名称包括目标词的POI数据, 由于目标元素中记载了目标词所属POI数据的位置信息, 因此可以将获取的目标词所属

25、POI数据的位置信息组成集合, 例如构建位置集合 m是包含目标词wi的POI的位置数量, 也即是目标元素的数量。 0055 S205、 对目标词所属POI数据的位置信息进行聚类。 0056 可选的, 采用基于密度的聚类算法, 对所述目标词所属POI数据的位置信息进行聚 类处理。 具体过程参见上述实施例, 在此不再赘述。 0057 需要说明的是, 通过构建词位置集合, 并从各词位置集合中获取目标元素中包括 的目标词所属POI数据的位置信息, 提升了获取目标词所属POI数据的位置信息的效率, 进 而提升后续的聚类的效率。 0058 S206、 根据位置信息的聚类结果, 对目标词进行地图区域词的识别

26、。 0059 本申请实施例中, 通过构建词位置集合, 可以快速的从词位置集合中获取确定目 标词和目标词所属POI数据的位置信息, 由此保证了后续聚类效率, 进而提升区域词识别的 效率。 0060 图3是根据本申请实施例的地图区域词识别方法的流程示意图, 本实施例是在上 述实施例的基础上进行优化, 参见图3, 该地图区域词识别的方法具体如下: 0061 S301、 获取地图的兴趣点POI数据。 0062 S302、 针对每个POI数据, 生成对应的词位置集合, 其中, 词位置集合包括至少一个 元素, 且每个元素包括一个文本词和文本词所属POI数据的位置信息。 0063 S303、 将各个词位置集

27、合中的至少一个文本词作为目标词。 0064 S304、 确定各个词位置集合中包括目标词的目标元素, 并获取目标元素中包括的 目标词所属POI数据的位置信息。 0065 S305、 确定目标元素的数量, 并在目标元素的数量大于第一数量阈值时, 触发执行 对目标词所属POI数据的位置信息进行聚类的操作。 0066 本申请实施例中, 之所以确定目标元素的数量, 如果目标元素的数量过少, 则表明 POI名称中包括目标词的POI数据的数量较少, 该目标词肯定不是区域词, 因此无需在进行 后续的聚类操作。 因此为了保证后续聚类操作的有效性, 需要在目标元素的数量大于第一 数量阈值时, 触发执行对目标词所属

28、POI数据的位置信息进行聚类的操作。 0067 S306、 对目标词所属POI数据的位置信息进行聚类。 0068 S307、 根据位置信息的聚类结果, 对目标词进行地图区域词的识别。 说明书 4/8 页 7 CN 112016326 A 7 0069 可选的, 获取聚类结果中聚类中心的数量, 若该数量不大于第二预设数量阈值, 则 确定目标词为地图区域词。 0070 本申请实施例中, 通过确定目标元素的数量, 并在目标元素的数量大于第一数量 阈值时, 触发执行对目标词所属POI数据的位置信息进行聚类的操作, 由此保证了聚类操作 的有效性。 0071 图4是根据本申请实施例的地图区域词识别装置的结

29、构示意图, 本实施例可适用 于服务器从已有的地图兴趣点POI(Point of Interest)数据中识别区域词, 以将识别的区 域词用于地图等相关应用的情况。 如图4所示, 该装置400具体包括: 0072 POI数据获取模块401, 用于获取地图的兴趣点POI数据; 0073 目标词确定与聚类模块402, 用于将POI数据中的至少一个文本词作为目标词, 根 据目标词所属POI数据的位置信息进行聚类处理; 0074 区域词识别模块403, 用于根据位置信息的聚类结果, 对目标词进行地图区域词的 识别。 0075 在上述实施例的基础上, 可选的, 目标词确定与聚类模块, 包括: 0076 词

30、位置集合生成单元, 用于针对每个POI数据, 生成对应的词位置集合, 其中, 词位 置集合包括至少一个元素, 且每个元素包括一个文本词和文本词所属POI数据的位置信息; 0077 目标词确定单元, 用于将各个词位置集合中的至少一个文本词作为目标词。 0078 在上述实施例的基础上, 可选的, 目标词确定与聚类模块, 包括: 0079 目标元素确定单元, 用于确定各个词位置集合中包括目标词的目标元素, 并获取 目标元素中包括的目标词所属POI数据的位置信息; 0080 聚类单元, 用于对目标词所属POI数据的位置信息进行聚类。 0081 在上述实施例的基础上, 可选的, 词位置集合生成单元具体用

31、于: 0082 针对任一POI数据, 获取该POI数据中的POI名称和位置信息; 0083 对POI名称进行分词处理, 得到至少一个文本词; 0084 基于至少一个文本词和位置信息, 生成该POI数据对应的词位置集合。 0085 在上述实施例的基础上, 可选的, 该装置还包括: 0086 触发模块, 用于在对目标词所属POI数据的位置信息进行聚类之前, 确定目标元素 的数量, 并在目标元素的数量大于第一数量阈值时, 触发执行对目标词所属POI数据的位置 信息进行聚类的操作。 0087 在上述实施例的基础上, 可选的, 区域词识别模块具体用于: 0088 获取聚类结果中聚类中心的数量, 若该数量

32、不大于第二预设数量阈值, 则确定目 标词为地图区域词。 0089 在上述实施例的基础上, 可选的, 目标词确定与聚类模块还用于: 0090 采用基于密度的聚类算法, 对目标词所属POI数据的位置信息进行聚类处理。 0091 本申请实施例提供的地图区域词识别装置400可执行本申请任意实施例提供的地 图区域词识别方法, 具备执行方法相应的功能模块和有益效果。 本实施例中未详尽描述的 内容可以参考本申请任意方法实施例中的描述。 0092 根据本申请的实施例, 本申请还提供了一种电子设备和一种可读存储介质。 0093 如图5所示, 是根据本申请实施例的地图区域词识别方法的电子设备的框图。 电子 说明书

33、 5/8 页 8 CN 112016326 A 8 设备旨在表示各种形式的数字计算机, 诸如, 膝上型计算机、 台式计算机、 工作台、 个人数字 助理、 服务器、 刀片式服务器、 大型计算机、 和其它适合的计算机。 电子设备还可以表示各种 形式的移动装置, 诸如, 个人数字处理、 蜂窝电话、 智能电话、 可穿戴设备和其它类似的计算 装置。 本文所示的部件、 它们的连接和关系、 以及它们的功能仅仅作为示例, 并且不意在限 制本文中描述的和/或者要求的本申请的实现。 0094 如图5所示, 该电子设备包括: 一个或多个处理器501、 存储器502, 以及用于连接各 部件的接口, 包括高速接口和低速

34、接口。 各个部件利用不同的总线互相连接, 并且可以被安 装在公共主板上或者根据需要以其它方式安装。 处理器可以对在电子设备内执行的指令进 行处理, 包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如, 耦合至接口的 显示设备)上显示GUI的图形信息的指令。 在其它实施方式中, 若需要, 可以将多个处理器 和/或多条总线与多个存储器和多个存储器一起使用。 同样, 可以连接多个电子设备, 各个 设备提供部分必要的操作(例如, 作为服务器阵列、 一组刀片式服务器、 或者多处理器系 统)。 图5中以一个处理器501为例。 0095 存储器502即为本申请所提供的非瞬时计算机可读存储介质。 其中

35、, 所述存储器存 储有可由至少一个处理器执行的指令, 以使所述至少一个处理器执行本申请所提供的地图 区域词识别方法。 本申请的非瞬时计算机可读存储介质存储计算机指令, 该计算机指令用 于使计算机执行本申请所提供的地图区域词识别方法。 0096 存储器502作为一种非瞬时计算机可读存储介质, 可用于存储非瞬时软件程序、 非 瞬时计算机可执行程序以及模块, 如本申请实施例中的地图区域词识别方法对应的程序指 令/模块(例如, 附图4所示的POI数据获取模块401、 目标词确定与聚类模块402、 区域词识别 模块403)。 处理器501通过运行存储在存储器502中的非瞬时软件程序、 指令以及模块, 从

36、而 执行服务器的各种功能应用以及数据处理, 即实现上述方法实施例中的地图区域词识别方 法。 0097 存储器502可以包括存储程序区和存储数据区, 其中, 存储程序区可存储操作系 统、 至少一个功能所需要的应用程序; 存储数据区可存储根据实现本申请实施例的地图区 域词识别方法的电子设备的使用所创建的数据等。 此外, 存储器502可以包括高速随机存取 存储器, 还可以包括非瞬时存储器, 例如至少一个磁盘存储器件、 闪存器件、 或其他非瞬时 固态存储器件。 在一些实施例中, 存储器502可选包括相对于处理器501远程设置的存储器, 这些远程存储器可以通过网络连接至实现本申请实施例的地图区域词识别方

37、法的电子设 备。 上述网络的实例包括但不限于互联网、 企业内部网、 局域网、 移动通信网及其组合。 0098 实现本申请实施例的地图区域词识别方法的电子设备还可以包括: 输入装置503 和输出装置504。 处理器501、 存储器502、 输入装置503和输出装置504可以通过总线或者其 他方式连接, 图5中以通过总线连接为例。 0099 输入装置503可接收输入的数字或字符信息, 以及产生与实现本申请实施例的地 图区域词识别方法的电子设备的用户设置以及功能控制有关的键信号输入, 例如触摸屏、 小键盘、 鼠标、 轨迹板、 触摸板、 指示杆、 一个或者多个鼠标按钮、 轨迹球、 操纵杆等输入装 置。

38、 输出装置504可以包括显示设备、 辅助照明装置(例如, LED)和触觉反馈装置(例如, 振动 电机)等。 该显示设备可以包括但不限于, 液晶显示器(LCD)、 发光二极管(LED)显示器和等 离子体显示器。 在一些实施方式中, 显示设备可以是触摸屏。 说明书 6/8 页 9 CN 112016326 A 9 0100 此处描述的系统和技术的各种实施方式可以在数字电子电路系统、 集成电路系 统、 专用ASIC(专用集成电路)、 计算机硬件、 固件、 软件、 和/或它们的组合中实现。 这些各种 实施方式可以包括: 实施在一个或者多个计算机程序中, 该一个或者多个计算机程序可在 包括至少一个可编程

39、处理器的可编程系统上执行和/或解释, 该可编程处理器可以是专用 或者通用可编程处理器, 可以从存储系统、 至少一个输入装置、 和至少一个输出装置接收数 据和指令, 并且将数据和指令传输至该存储系统、 该至少一个输入装置、 和该至少一个输出 装置。 0101 这些计算程序(也称作程序、 软件、 软件应用、 或者代码)包括可编程处理器的机器 指令, 并且可以利用高级过程和/或面向对象的编程语言、 和/或汇编/机器语言来实施这些 计算程序。 如本文使用的, 术语 “机器可读介质” 和 “计算机可读介质” 指的是用于将机器指 令和/或数据提供给可编程处理器的任何计算机程序产品、 设备、 和/或装置(例

40、如, 磁盘、 光 盘、 存储器、 可编程逻辑装置(PLD), 包括, 接收作为机器可读信号的机器指令的机器可读 介质。 术语 “机器可读信号” 指的是用于将机器指令和/或数据提供给可编程处理器的任何 信号。 0102 为了提供与用户的交互, 可以在计算机上实施此处描述的系统和技术, 该计算机 具有: 用于向用户显示信息的显示装置(例如, CRT(阴极射线管)或者LCD(液晶显示器)监视 器); 以及键盘和指向装置(例如, 鼠标或者轨迹球), 用户可以通过该键盘和该指向装置来 将输入提供给计算机。 其它种类的装置还可以用于提供与用户的交互; 例如, 提供给用户的 反馈可以是任何形式的传感反馈(例

41、如, 视觉反馈、 听觉反馈、 或者触觉反馈); 并且可以用 任何形式(包括声输入、 语音输入或者、 触觉输入)来接收来自用户的输入。 0103 可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如, 作为数据 服务器)、 或者包括中间件部件的计算系统(例如, 应用服务器)、 或者包括前端部件的计算 系统(例如, 具有图形用户界面或者网络浏览器的用户计算机, 用户可以通过该图形用户界 面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、 或者包括这种后台部 件、 中间件部件、 或者前端部件的任何组合的计算系统中。 可以通过任何形式或者介质的数 字数据通信(例如, 通信网络)来将系

42、统的部件相互连接。 通信网络的示例包括: 局域网 (LAN)、 广域网(WAN)、 互联网和区块链网络。 0104 计算机系统可以包括客户端和服务器。 客户端和服务器一般远离彼此并且通常通 过通信网络进行交互。 通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计 算机程序来产生客户端和服务器的关系。 服务器可以是云服务器, 又称为云计算服务器或 云主机, 是云计算服务体系中的一项主机产品, 以解决了传统物理主机与VPS服务中, 存在 的管理难度大, 业务扩展性弱的缺陷。 0105 根据本申请实施例的技术方案, 实现了无需人工上传即可识别区域词以及提升区 域词识别结果的覆盖率的效果。 0

43、106 应该理解, 可以使用上面所示的各种形式的流程, 重新排序、 增加或删除步骤。 例 如, 本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行, 只 要能够实现本申请公开的技术方案所期望的结果, 本文在此不进行限制。 0107 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、 推理、 思 考、 规划等)的学科, 既有硬件层面的技术也有软件层面的技术。 人工智能硬件技术一般包 说明书 7/8 页 10 CN 112016326 A 10 括如传感器、 专用人工智能芯片、 云计算、 分布式存储、 大数据处理等技术; 人工智能软件技 术主要包括计算机视觉技术、

44、 语音识别技术、 自然语言处理技术以及机器学习/深度学习、 大数据处理技术、 知识图谱技术等几大方向。 0108 上述具体实施方式, 并不构成对本申请保护范围的限制。 本领域技术人员应该明 白的是, 根据设计要求和其他因素, 可以进行各种修改、 组合、 子组合和替代。 任何在本申请 的精神和原则之内所作的修改、 等同替换和改进等, 均应包含在本申请保护范围之内。 说明书 8/8 页 11 CN 112016326 A 11 图1 说明书附图 1/4 页 12 CN 112016326 A 12 图2 说明书附图 2/4 页 13 CN 112016326 A 13 图3 说明书附图 3/4 页 14 CN 112016326 A 14 图4 图5 说明书附图 4/4 页 15 CN 112016326 A 15


注意事项

本文(地图区域词识别方法、装置、电子设备和存储介质.pdf)为本站会员(宁***)主动上传,专利查询网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知专利查询网(点击联系客服),我们立即给予删除!




关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1